
We present a model for estimating the probability that a
pair of author names (sharing last name and first initial),
appearing on two different Medline articles, refer to the
same individual. The model uses a simple yet powerful
similarity profile between a pair of articles, based on title,
journal name, coauthor names, medical subject headings
(MeSH), language, affiliation, and name attributes (preva-
lence in the literature, middle initial, and suffix). The simi-
larity profile distribution is computed from reference sets
consisting of pairs of articles containing almost exclu-
sively author matches versus nonmatches, generated in
an unbiased manner. Although the match set is generated
automatically and might contain a small proportion of
nonmatches, the model is quite robust against contami-
nation with nonmatches. We have created a free, public
service (“Author-ity”: http://arrowsmith.psych.uic.edu)
that takes as input an author’s name given on a specific
article, and gives as output a list of all articles with that
(last name, first initial) ranked by decreasing similarity,
with match probability indicated.

Introduction

Bio-informatics research databases have dramatically ac-
celerated the pace of discovery in the biomedical sciences.
Among these, Medline is the oldest and the best curated, and
arguably it contains the most scientific information insofar
as it summarizes knowledge that has been published across
all biomedical fields. Medline and the most popular search
interface, PubMed, have devoted a great deal of attention to
the comprehensive retrieval of papers according to their

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 56(2):140–158, 2005

A Probabilistic Similarity Metric for Medline Records:
A Model for Author Name Disambiguation

Vetle I. Torvik and Marc Weeber
Department of Psychiatry (MC912), University of Illinois at Chicago, 1601 W. Taylor Street, Chicago, IL 60612.
E-mail: vtorvik@uic.edu, marc@weeber.net

Don R. Swanson
Division of the Humanities, University of Chicago, Chicago, IL 60637. E-mail: dswanson@uchicago.edu

Neil R. Smalheiser
Department of Psychiatry (MC912), University of Illinois at Chicago, 1601 W. Taylor Street, Chicago, IL 60612.
E-mail: smalheiser@psych.uic.edu

Received April 24, 2003; revised October 16, 2003; accepted February 11,
2004

© 2004 Wiley Periodicals, Inc. • Published online 5 November 2004 in
Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/asi.20105

subject content. Thus, each paper in Medline is indexed by
hierarchical controlled-vocabulary medical subject headings
(http://www.nlm.nih.gov/mesh/), and this information is
used automatically in query processing by PubMed.

In contrast, relatively little attention has been given to
discerning who’s who in Medline—that is, which individu-
als have appeared as author or coauthor on specific papers.
Until 2002, Medline fields did not record the full first name
of an author, even if that information was given in the paper
(NLM Technical Bulletin, 2001), and even now PubMed
does not permit searching on author full names. Even know-
ing first name and middle initial does not suffice to solve the
problem of assigning authors, however: There are many dif-
ferent individuals having the name Robert W. Williams.
Furthermore, Medline fields generally record only the affili-
ation of the first-listed author and ignore all coauthors. (And
many earlier papers lack affiliations entirely; for example,
only 1.6% of papers published in 1986 encoded affiliation
data, with the percentage rising to 64% by 1989). For this
reason, one cannot selectively retrieve papers written by a
given individual, but must request all papers having a given
(last name, first initial) and sort through these manually. This
can be a significant inconvenience for end users—for
example, PubMed finds 208 papers with the name “RW
Williams,” and if one includes papers in which no middle
initial was given, or which used a different middle initial
(e.g., a maiden name), one needs to examine 7,500 papers.
One cannot rely on affiliation, journal, or even MeSH to re-
strict the search accurately to identify specific individuals,
particularly in the current age of multidisciplinary collabo-
rative research: Robert W. Williams of the University of
Tennessee at Memphis has appeared as coauthor on papers
listing a variety of institutional affiliations in the same year,
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on topics ranging from visual anatomy to behavioral genet-
ics to activation of T lymphocytes during virus infections.

The current inability to identify which papers bearing the
same name (last name, first initial) are written by different
individuals is also a critical impediment to research devoted
to understanding the publication behavior of biomedical
scientists. Citation analyses (Garfield, 1979; Noyons, Moed,
& Van Raan, 1999) and collaboration graphs (connecting
scientists who have published together) (Grossman, 2002;
Newman, 2001) are used heavily in scientometrics and pol-
icy studies, yet these currently rely on names (Institute for
Scientific Information [ISI] uses only first author names),
and this severely distorts the true picture, particularly for
common names. Going further, one would like to be able to
describe collaboration graphs of scientists that are anchored
in specific literatures (e.g., Jones has published in literature
A [but not C], and has coauthored one or more papers with
Smith, who has published in literature C [but not A]; Torvik,
Weeber, Smalheiser, & Swanson, 2002). To develop such
tools, and to analyze the structure of the resulting collabora-
tive chains, it is important to disambiguate which individu-
als have written which papers in Medline. Disambiguation
could also assist with everyday scientific tasks of numerous
kinds: For example, study sections seeking to choose refer-
ees would benefit from identifying all of their coauthors (i.e.,
identifying conflicts of interest early); journal editors could
assign papers for review more readily by knowing the char-
acteristic publication profile of its prospective reviewers;
and conference organizers would similarly benefit from
knowing the publication profile of prospective invitees.

Here, we present a model for estimating the probability
that a pair of author names (sharing a last name and first ini-
tial) appearing on two different articles refer to the same in-
dividual. We hypothesize that different papers written by the
same individual will tend to share certain characteristic fea-
tures, not only dealing with the author’s personal informa-
tion (name and affiliation attributes) but other attributes of
the articles as well, much more so than pairs of papers
authored by different individuals.

First, we present a comparison vector, which we call the
“similarity profile,” that describes, for any two papers bear-
ing the same author (last name, first initial), how similar the
two papers are across eight different dimensions: middle
initial match, suffix match (e.g., Jr. or III), journal name, lan-
guage of article match, number of coauthor names in com-
mon, number of title words in common after preprocessing
and removing title-stopwords, number of affiliation words in
common after preprocessing and removing affiliation-
stopwords, and number of MeSH words in common after pre-
processing and removing mesh-stopwords. These are calcu-
lated solely from comparing corresponding Medline fields.

Second, the similarity profile is computed for the mem-
bers of two large reference sets: a match set, consisting of
many (millions) pairs of papers almost exclusively coau-
thored by the same individual, and a nonmatch set, consisting
of many pairs of papers known to be authored by different
individuals. These reference sets are the heart of the model

and represent Medline as a whole in an unbiased fashion.
Given any pair of papers bearing the same author (last name,
first initial), the similarity profile is computed, and its relative
frequency is observed in the match set versus the nonmatch
set. The observed relative frequencies are then smoothed, in-
terpolated, and extrapolated for profiles that were infre-
quently (or never) observed in the reference sets based on the
flexible monotonicity criterion, which takes into account
possible nonlinear and interactive effects across dimensions.

If the observed profile is much more frequent in the
match set than in the nonmatch set, it is likely that the two
papers were written by the same individual.

Third, when a population of articles corresponding to a
particular name is considered, the relative frequency is fur-
ther weighted by an estimate for the a priori probability of
match for the given name. This allows for incorporating the
variability between individual names because of name fre-
quency and the number of articles per individual into the es-
timates of the pairwise match probabilities. For example, if
the name is very unusual (e.g., D. C. Gajdusek), the chances
are better that any two randomly chosen papers with that
name are written by the same individual than if the name is
very common (e.g., J. Smith).

Fourth, the estimated pairwise probabilities are further
improved by using information from three-way comparisons
to take into account the “geometric” constraints of author-
ship. By the laws of probability, if paper A and paper B have
a pairwise probability of 0.9 that they were written by
the same author, and if paper B and paper C have a pairwise
probability of 0.9, then paper A and C must logically have a
pairwise probability of at least 0.8 (�0.9 � 0.9 � 1). Yet
empirically we sometimes observe two papers that both have
a high probability of match (0.9) to a third paper nevertheless
have a low estimated probability of match (0.2) to each other
based solely on pairwise comparisons. For example, suppose
a paper by Cohen and O’Reilley and one by Cohen and Naka-
mura both share coauthors with a paper by Cohen, O’Reilley,
and Nakamura. It is likely that it is the same Cohen in all
three papers, yet if the (Cohen and O’Reilley) and (Cohen
and Nakamura) papers do not share many attributes, the
model might give a low estimated pairwise probability value.

Background Information

Medline

Medline is the U.S. National Library of Medicine’s
(NLM) premier bibliographic database containing
11,299,108 records of biomedical articles as of January 2002,
and approximately 2,000 newly completed records are added
daily. The National Center for Biotechnology Information
(NCBI) maintains the Entrez information retrieval system,
also called PubMed (http://www.ncbi.nih.gov/ entrez), which
provides free, public access to Medline. When a new article is
added to Medline, it is manually indexed by medical subject
headings (MeSH). Each Medline record contains the title, au-
thor name(s), affiliation (if available), abstract (if available),
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journal, date of publication, language, and MeSH corre-
sponding to a particular paper. Starting in 1988, the NLM
started consistently recording affiliations corresponding to
the first author. The number of authors included in Medline
records have changed over time. During 1966–1984, and
2000–present, all authors were included; during 1984–1995
and 1995–2000, the first 10 and 25 authors are included,
respectively. Full names are included starting with articles
published in 2002 and only when they are listed on the
original article.

Authority Control in Bibliographic Databases

The process of maintaining cross-references and consistent
forms of fields in bibliographic databases is referred to as au-
thority control. Traditionally, authority files have been created
and updated manually by librarians. For example, the Ameri-
can Mathematical Society maintains MathSciNet, which has
over 380,000 authors of mathematical research articles en-
coded, a result of manually disambiguating author names
(http://www.ams.org/mathscinet/searchauthors). There is no
similar database of authors in the biomedical literature.

There are efforts being made to automatically create au-
thority files for fields that are hard to control, such as author
names and affiliations. French, Powell, and Schulman (2000)
used edit distances to authority control affiliations in an astro-
physics bibliographic database with approximately 450,000
records. Warner and Brown (2001) used “commonness” of
name, publication date versus author’s date of birth or death,
and author’s affiliation to authority control a collection on ap-
proximately 29,000 musical compositions. The U.S. Census
Bureau authority controls (referred to as record linkage)
names and addresses of administrative records to identify in-
dividuals within and across large databases, such as the 1040
and social security files (Judson, 2002; Winkler, 1995).

Word Sense Disambiguation in Free Text

There is a large body of literature on word sense disam-
biguation in free text. For example, Yu, Hripcsak, and
Friedman (2002) identified a list of abbreviations and their
full forms from Medline abstracts. There is also a large body
of literature on free text authorship attribution. For example,
Holmes, Gordon, and Wilson (2001) used stylometry to ad-
dress the authorship of love letters supposedly written by a
confederate general during the Civil War. When handling
larger bodies of free text, application specific preprocessing
steps (e.g., information extraction techniques) are most often
needed to narrow in on words or phrases that are to be dis-
ambiguated. Authority control alleviates some of this burden
because the fields are more uniform and, as such, help
increase the accuracy of disambiguation.

Pairwise Document Similarity Measures

The present model is an example of probabilistic infor-
mation retrieval, which is guided by the Probability Rank-
ing Principle (Robertson, 1977; Sparck Jones, Walker, &

Robertson, 2000):

If retrieved documents are ordered by decreasing probability
of relevance on the data available, then the system’s effec-
tiveness is the best to be gotten for the data.

The principle suggests utilizing the available matching
information to its fullest and optimally weighting individual
matching pieces of this information, while leaving the rela-
tive importance of precision and recall as a user adjustable
parameter. In the present situation, it is necessary for the
underlying model to perform a functional mapping from a
multidimensional space (name and article attributes) onto a
single dimension that gives an appropriate ranking.

The Data, Model, and Methods

Constructing the Author-Article Database Table
from Medline

The 2002 baseline release of Medline comes as XML files
in utf-8 format, which includes most international characters.
From these files a relational author database using the ASCII
character set (English alphabet) was created.This database was
actually split into several tables to optimize the various types of
SQL queries that are necessary. For illustrative purposes, this
section describes one table called AUTHOR_ARTICLES,
which contains all 34,128,384 unique (author name, article)
pairs defined on the 11 fields listed in the following paragraphs.

Preprocessing the title, affiliation, and MeSH fields
include making all characters lowercase, removing nonal-
phabetic characters (except numbers), and removing single-
character words. The sets of stopwords are used to reduce
the number of arbitrary similarities between differing indi-
viduals. The stopwords for the affiliation and MeSH fields
were selected from the topmost frequently used words. For
example, “human” appears as a MeSH in approximately
65% of all Medline records, and the word “university”
appears in 50% of the affiliations, and, as such, will probably
not be of much value in discriminating authors. The three
different sets of title stopwords will be used to analyze the
effect of varying the extent of stoplisting.

Fields in database table AUTHOR_ARTICLES:

(primary key � pmid, order)
pmid � unique (PubMed) article identification number
order � position of author name on article
last � last name of author
init1 � first initial of author name
init2 � middle initial of author name
suff � suffix of author name
title � set of title words after preprocessing and removing

title-stopwords
affl � set of affiliation words after preprocessing and

removing affiliation-stopwords
jrnl � journal name
lang � language of article
mesh � set of MeSH words after preprocessing and

removing mesh-stopwords



where

title-stopwords �
Small: PubMed’s set of stopwords as of January 2002, which

consists 365 commonly used English words, like “the”
and “and.”

Medium: The small stoplist together with the 1,029 words
that appear in over 0.1% of the titles. About 400 of these
frequent words were not included in this list because we
judged that they may be important for establishing con-
nections between two disparate disciplines.

Large: The small stoplist together with a list of the
8,207 words that are thought not to be important in es-
tablishing connections between two disparate disci-
plines. These words have been accumulated over the
years as a part of the Arrowsmith Project (Swanson &
Smalheiser, 1997). All words on the medium stoplist
were also on the large stoplist.

affiliation-stopwords � small title-stopwords � {university,
medicine, medical, usa, hospital, school, institute, center,
research, science, college, health, new, laboratory, divi-
sion, national},

mesh-stopwords � {human, male, female, animal, adult,
support non-u.s. gov’t, middle age, aged, english ab-
stract, support u.s. gov’t p.h.s., case report, rats, compar-
ative study, adolescence, child, mice, time factors, child
preschool, pregnancy, united states, infant, molecular se-
quence data, kinetics, support u.s. gov’t non-p.h.s., infant
newborn}.

Of the records in the AUTHOR_ARTICLES table, 55%
of the names have no middle initial, and 0.085% have no
first initial. Many of the names without a first initial either
contain errors or consist of people or entities that go by a sin-
gle name, such as Sister Mary and the Duchess of York.
There are 2,374,994 distinct names based on last name and
first initial, of which 39% appear in only one article, and
20 names (including J Smith, J Lee, J Miller among others)
appear in over 6,000 articles.

Defining the Similarity Profile

The objective is to define a similarity profile that captures
multiple aspects of similarity between a pair of papers by the
same author, to discriminate them from pairs of papers by
different authors. Each element of the similarity profile is
obtained from a field in Medline (such as title), where the
shared terms (ignoring multiple occurrences) are enumer-
ated. The simplicity of the profile makes it easy to calculate
and interpret and allows for incorporating interactive (e.g.,
between Journal and MeSH) and nonlinear effects into the
probabilistic model.

Suppose two distinct records obtained from the
AUTHOR_ARTICLES table are given by:

RA � (pmidA, orderA, lastA, init1A, init2A, suffA, coauthA,
titleA, afflA, jrnlA, langA, meshA),

RB � (pmidB, orderB, lastB, init1B, init2B, suffB, coauthB,
titleB, afflB, jrnlB, langB, meshB),
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where

pmidA � pmidB,
coauthA � set of distinct author names (defined by last and

init1) on the article corresponding to pmidA, less (lastA,
init1A), and

coauthB � set of distinct author names (defined by last and
init1) on the article corresponding to pmidB, less (lastB,
init1B).

Comparisons will only be performed for pairs of records
that share an author last name and first initial. The similarity
profile x � (x1, x2, x3, x4, x5, x6, x7, x8, x9) is created by com-
paring the two records element wise as follows:

x1 � 3 if init2A � init2B and both are given (e.g., (A, A)),
2 if init2A � init2B and both are not given (i.e., (∅, ∅)),
1 if init2A � init2B and one is not given (e.g., (A, ∅)),
and 0 if init2A � init2B and both are given (e.g., (A, B)).

x2 � 1 if suffA � suffB and both are given (e.g., (Jr, Jr)), and
0 otherwise,

x3 � 0 titleA � titleB 0,
x4 � 1 if jrnlA � jrnlB, and 0 otherwise,
x5 � 0 coauthA � coauthB 0,
x6 � 0meshA � meshB 0,
x7 � 3 if langA � langB and non-English (e.g., (jpn, jpn)),

2 if langA � langB and English (i.e., (eng, eng)),
1 if langA � langB and one is English (e.g., (eng, jpn)),
and
0 if langA � langB and both are non-English (e.g.,
(jpn, fre)).

x8 � 0 afflA � afflB 0,
x9 � 1 if afflA � ∅ or afflB � ∅, and 0 otherwise.

Here, the scores x1 and x2 describe the similarity of the
two names, and will be referred to as name similarity scores,
while the scores describe the similarity of the
two articles they appear on, and will be referred to as article
similarity scores. Other attributes like author name position,
and the presence of non-ASCII characters in the last name,
were excluded because they were found not to have a signif-
icant discriminatory power in our preliminary studies.

Outline of the Probabilistic Matching Model

It is our hypothesis that different articles authored by the
same individual will share similarities in one or more as-
pects of the Medline records, more so than articles authored
by different individuals.

To formalize this idea mathematically let Pr{x 0M} and
Pr{x 0N} denote the probability of observing similarity profile
x given that one knows the two author names being compared
refer to the same individual, and different individuals, respec-
tively. Here, M denotes an “author match,” and N denotes an
“author nonmatch.” It is then intuitive that a high value of the
ratio r(x) � Pr{x 0M}�Pr{x 0N} will strengthen the case for
saying that the two names refer to the same person. For ex-
ample, suppose that a particular similarity profile x occurs fre-
quently when comparing same individuals (e.g., Pr{x 0M} �
10%), and rarely occurs when comparing different people,

x3, x4, . . . , x9
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(e.g., Pr{x 0N} � 0.01%). In this case r(x) is large (10�0.01 �
1,000), which suggests that when x is observed the two names
are most likely referring to the same individual.

The actual probability of the two names referring to the
same individual depends on the population of articles that
are being compared. For example, when comparing a popu-
lation of two individuals who have each published five pa-
pers, the ratio r(x) should be weighted much higher than
when comparing a population of 10 individuals with five pa-
pers each. To formalize this weighting idea let Pr{M 0 x} de-
note the probability that two author names being compared
refer to the same individual given that the similarity profile x
is observed. Bayes’ theorem is then manipulated as follows:

The resulting expression shows how Pr{M 0 x} only de-
pends on r(x) and Pr{M}. The greater the values for Pr{M}
and r(x) become, the greater Pr{M 0x} becomes. Here, the
parameter Pr{M} denotes the overall probability of a match
for a given name within a population of articles. In other
words, it measures the probability that the two names refer
to the same individual not knowing anything about the simi-
larity profile x. For example, when comparing a population
of two individuals each with five papers, there are 45 distinct
pairs of papers, of which 20 are matches, leading to
Pr{M} � 4�9. Similarly, when comparing a population of
10 individuals each with five papers, there are 1,225 distinct
pairs of papers, of which 100 are matches, leading to
Pr{M} � 4�49. One will, of course, not know how many in-
dividuals there are with a particular name or how many pa-
pers each has written. Pr{M} can be estimated in a number
of different ways described in Step 3 of the section called A
Stepwise Procedure for Fitting the Probability Model. The
reason for this indirect model is because of the fact that
Pr{M 0 x} cannot be accurately and unbiasedly estimated in
an easy and direct fashion.

A Stepwise Procedure for Fitting the Probability Model

We have developed a method for generating training data
in an unbiased manner, and estimating r(x) for all possible
profiles x across all author names in Medline, and Pr{M} for
each name, based on the following criterion:

The monotonicity criterion: x � y implies that Pr{M 0 x} �
Pr{M 0 y} 5 x, y where x � y holds if and only if
yi 5 i � 1, 2, . . . , 9.

xi �

 �
1

1 �
1 � Pr5M6

Pr5M6r(x)

 �
1

1 �
Pr5x 0N6Pr5N6

Pr5x 0M6Pr5M6

 �
Pr5x 0M6 Pr5M6

Pr5x 0M6Pr5M6 � Pr5x 0N6Pr5N6

 Pr5M 0 x6 � Pr5x 0M6 Pr5M6�Pr5x6

The monotonicity criterion can be interpreted as each
similarity score xi having a nonnegative effect on the prob-
ability of a match. As an example, consider a pair of pa-
pers, both with C Friedman as an author. With all other
scores fixed, the more coauthor names the two articles have
in common, the more likely it is that the two C Friedman’s
refer to the same C Friedman. Because Pr{M} is constant
for a given name, the function r(x) will also satisfy the mo-
notonicity criterion. A nice property of this criterion is that
it is not overly restrictive, and provides a manner in which
to smooth, interpolate and extrapolate our estimates for
r(x) to profiles that are rarely (or never) observed in our
training sets. The interested reader is referred to Torvik and
Triantaphyllou (2002, 2003), and Robertson, Wright, and
Dykstra (1988) for further details on the monotonicity
property.

The goal is to estimate Pr{M 0 x}, the probability that a
pair of names on two different articles refer to the same indi-
vidual for any possible x. To that end, estimates of r(x) �
Pr{x 0M}�Pr{x 0N} are computed and stored for all possible x
averaged across all names in Medline. When a pair of names
are to be compared, the distribution Pr{x} is computed for
that name, and compared to Pr{x 0M} and Pr{x 0N} for a few
representative profiles x to initially estimate Pr{M}. Next,
the similarity profile x is computed for the pair to be com-
pared. Then, r(x) is looked up and weighted by the estimate
of Pr{M} to compute initial estimates of Pr{M 0 x}. These es-
timates are then improved by updating the a priori match
probability and imposing “geometric” three-way constraints
on the pairwise probabilities. The details of this procedure
are described next.

Step 1: Generating reference sets. To estimate r(x) one
needs to generate training data measured on all nine similar-
ity scores, where one can label, with high confidence, the
individual pairs as matches or nonmatches.

First, to generate matches, all author names that have first
and middle initials, and suffixes were selected. Then, the
article similarity scores were computed for all pairs that
matched on last name, first and middle initials, and suffixes.
In most cases, these pairs represent the same person (average
r-value �3,500). To reduce the number of nonmatches
within this set, names that have more than one middle initial
recorded with suffixes (e.g., JA Smith Jr and JB Smith Jr)
were excluded. This resulted in about 27,000 distinct names,
and 4.3 million distinct pairs of “matches” defined on the
article similarity scores, which is referred to as the article
attribute match set. Second, to generate nonmatches,
30,000 records from the AUTHOR_ARTICLES table were
randomly selected without replacement. Then, the article
similarity scores were computed for all pairs that differed on
last names and pmid. This resulted in a set of 450 million
pairs, which probably excludes matches altogether and is
referred as the article attribute nonmatch set.

To generate an analogous pair of sets of matches and non-
matches for the name similarity scores, 1,000 names were
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randomly selected without replacement, and within each
name, all pairwise comparisons were computed. This set is
referred to as the mixed set as it contains a significant pro-
portion of both matches and nonmatches. From the mixed
set we extracted the 54,000 pairs that were both first authors
and had one or more coauthor names in common, two or
more affiliation words in common, and two or more MeSH
terms in common. In most cases, these pairs represent the
same person (average r-value � 5,000). This set is referred
to as the name attribute match set. Similarly, we extracted
the 9.2 million pairs of articles that shared first author name
but did not have anything else in common other than lan-
guage, nor were they missing the affiliations. These pairs
have very high probability of being authored by different in-
dividuals (average r-value � 0.01). This set is referred to as
the name attribute nonmatch set.

Because suffixes are much more common in English
names than non-English, the article attribute match set con-
tained an unusually high number of English articles, and it is
therefore biased for the language similarity score. To over-
come this bias, a separate set of matches were generated in a
similar fashion as the name attribute match set, yielding a
language attribute match set. Table 1 summarizes the man-
ner in which all the training sets were generated.

Step 2: Estimating r(x) for all possible similarity profiles x
based on the monotonicity criterion. The goal is to create
a lookup table for the estimated ratio r(x) � Pr{x 0M}�
Pr{x 0N} for all possible x. Because the individual reference
sets for the article similarity scores, language similarity
scores, and name similarity scores were generated indepen-
dently, their individual ratio functions r1(x1), r2(x2), r7(x7),
and ra(xa), respectively, are first estimated. Together these
functions can be used to estimate the overall ratio by

This is based on the criterion that x1, x2, x7, and xa are all
mutually independent in their effect on the probability of
match. The validity of this criterion is assessed in the section
called Evaluation of the Fitted Model.

Each xi value for the name and language scores (i.e., x1 �
0, 1, 2, 3; x2 � 0, 1; x7 � 0, 1, 2, 3) was observed a sufficient
number of times in both the match and nonmatch sets to

r̂(x1, x2, x3, . . . , x9) � r1(x1)r2(x2)r7(x7)r̂a(x3, x4, x5, x6, x8, x9)

provide accurate estimates. The mean estimate satisfies the
monotonicity criterion and is given by

where

m(xi) � number of times xi was observed in the match set,
and

n(xi) � number of times xi was observed in the nonmatch
set.

Estimating ra(xa) for the article similarity profiles xa �
(x3, x4, x5, x6, x8, x9) requires more consideration and will be
described next. The article attribute reference sets allows us
to get a preliminary estimate for ra(xa) by

where

X � {xa: m(xa) and n(xa) � 0}, the 1,081 profiles observed
at least once in both the match and nonmatch sets,

m(xa) � number of times profile xa was observed in the
match set, and

n(xa) � number of times profile xa was observed in the
nonmatch set.

However, the number of observations m(xa) and n(xa)
tend to decrease rapidly as xa increases and the numbers
vary because of sampling. Therefore, the estimates (xa) be-
come inaccurate as xa becomes greater. The next three steps,
2a, 2b, and 2c, alleviate this problem via smoothing, inter-
polation, and extrapolation, respectively.

Step 2a: Smoothing (xa) for each observed xa via quadratic
programming. To improve the accuracy our estimates for
ra(xa), the monotonicity property is enforced by solving the
following linearly constrained least squares problem: 

subject to r̂a(xa) � r̂a(ya)  5 (xa, ya): xa � ya

minimize g xa�X w(xa)(ra(xa) � r̂a(xa))2

r̂a

ra

ra(xa) �
m(xa)�g xa

m(xa)

n(xa)�g xa
n(xa)

,  5 xa � X,

ri(xi) �
m(xi)�g xi

m(xi)

n(xi)�g xi
n(xi)

,  for  i � 1, 2, 7,

TABLE 1. Definitions of the match sets and the nonmatch sets.

Match sets Nonmatch sets

Yields name similarity profiles (and language
similarity score in the match set)

Yields article similarity profiles

54,000 pairs of articles in which the first author
names match on last name and first initial,
and share one or more coauthor names, two
or more affiliation words, and two or more
MeSH. 

4.3 million pairs of articles in which the two
author names match on last name, initials and
suffix.

9.2 million pairs of articles in which the first
author names match on last name, first initial,
language, and have nothing else in common.

450 million pairs of articles in which the two
author names do not match on last name.
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where,

The objective of this optimization problem is to find an
estimate (xa) whose squared distance to (xa) is as small
as possible, weighted by the confidence in the estimate,
while satisfying the monotonicity constraints. The confi-
dence is here measured by m(xa) � n(xa), the number of
times the profile xa was observed in both the match set and
nonmatch set.

This optimization problem belongs to the class of problems
known as quadratic programs, in which the objective function
is quadratic and the constraints are linear in the unknowns.
Quadratic programs can in general be solved by several dif-
ferent optimization algorithms. The Active Set algorithm im-
plemented as a part of the Matlab Optimization Toolbox 2.1
(The Mathworks, Inc., Natick, MA) was used here.

Step 2b: Interpolating (xa) to unobserved xa that precede
the upper profiles. All the profiles in X precede one or both
of the profiles (9, 1, 7, 9, 12, 0) and (9, 1, 7, 9, 0, 1), which are
referred to as the upper profiles. The estimate (xa) for each
observed profile xa that precedes an upper profile is interpo-
lated from a preceding profile pa and a succeeding profile sa:

where

pa � the preceding profile (i.e., pa � xa) in X with the
maximum ratio (pa), and

sa � the succeeding profile (i.e., xa � sa) in X with the
minimum ratio (sa).

Note that this will result in interpolated estimates that sat-
isfy the monotonicity property (xa) � (ya) for any pair
(xa, ya): xa � ya. This will also hold true even when both xa

and ya are unobserved. The (xa) values were interpolated
for total of 21,319 unobserved profiles, leading to a total of
22,400 stored profiles and their estimated (xa) values. This
procedure provides the (xa) values for all profiles xa

preceding the two upper profiles.

Step 2c: Extrapolating (xa) to unobserved xa that succeed
the upper profiles. To get estimates for (xa) for all other
possible xa, the estimate for (xa) is extrapolated from a
preceding profile pa as follows:

r̂a(xa) � maxpa�X 5r̂a(pa): pa � xa6.

r̂a

r̂a

r̂a

r̂a

r̂a

r̂a

r̂ar̂a

r̂a

r̂a

xa � (9, 1, 7, 9, 12, 0)  or  xa � (9, 1, 7, 9, 0, 1),

r̂a(xa) �
r̂a(pa) � r̂a(sa)

2
  5 xa � X,  and

r̂a

r̂a

rar̂a

 ra(xa) �
m(xa)�g xa

m(xa)

n(xa)�g xa
n(xa)

.

 X � 5xa: m(xa) � 0 and n(xa) � 06,  and

 w(xa) � m(xa) � n(xa),

Here, pa denotes the preceding profile (i.e., pa � xa) with
the maximum ratio (pa). In practice, this step is quite sim-
ple, because a profile xa simply needs to be converted to:

xnew � (min{9, x3}, min{1, x4}, min{7, x5}, min{9, x6}, 
min{12, x8}, min{1, x9}),

and then (xnew) is simply looked up from one of the 22,400
stored profiles:

Note that is probably an underestimate for ra(xa).
This is of little practical significance because extrapolation
is rarely needed. Furthermore, the extrapolated values tend
to be very large (order of 104) and assigning larger values
will not be of practical use.

Step 3: Estimating Pr{M} for a specific author name: based
on name frequency, zero profile frequency, or directly from
predicted proportion of matches. The a priori probability
of match Pr{M} averaged across all the names in Medline is
about 1�11.

However, this estimate is not accurate for any given name,
because the number of individuals and the number of papers
per individual vary dramatically across names. It is therefore
important that the prior is estimated for each name individu-
ally. There are several possible ways to accomplish this:

The first approach is to compute the proportion of
“zero” profiles observed by performing all of the pairwise
comparisons for a given name, and then see how close this
proportion is to the match and nonmatch sets. Here, we refer
to the vectors xa � (0, 0, 0, 0, 0, 0) or (0, 0, 0, 0, 0, 1) as the
zero profile, which accounts for 40.4% of match set (i.e.,
Pr{xa 0M} � 0.404) and 86.6% of nonmatch set (i.e.,
Pr{xa 0 N} � 0.866). That is, when the population of articles
compared are all authored by different individuals, Pr{xa}
will tend to lie around 0.866, and if they are all authored by
the same person, Pr{xa} will tend to lie around 0.404. There-
fore, given an estimate for Pr{xa}, then Pr{M} can be esti-
mated as follows:

where

xa � (0, 0, 0, 0, 0, 0) or (0, 0, 0, 0, 0, 1).

This estimate measures the degree of similarity of the
articles themselves and, as such, takes into account the vari-
ability resulting from the number of individuals as well as
the number of articles per individual. However, this estimate
will not be accurate when Pr{xa} lies within the interval
(0.404, 0.866) and very close to one of the endpoints. In this
case, one can use an estimate based on the average prior (1)
for a given name frequency (see later) or (2) across all names

 �
Pr5xa6 � 0.866

0.404 � 0.866
,

 Pr5M6 �
Pr5xa6 � Pr5xa 0N6

Pr5xa 0M6 � Pr5xa 0N6

r̂a(xnew)

r̂a(xa) � r̂a(xnew).

r̂a

r̂a
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in Medline 0.11. For example, if the observed Pr{xa} is close
to or higher than 0.866, it is likely that all the papers are
authored by the same person, and a value for Pr{M} much
higher than 1�11, such as 0.9, should be used. Similarly,
when Pr{xa} close to or lower than 0.404, a value much
lower than 1�11, such as 0.01, should be used.

The second approach uses only the frequency of the
name itself to predict the prior. To do this one first needs to
define the prior probability of match (averaged across all
names in Medline) as a function of the frequency of the
name. Figure 1 shows the proportion of zero profiles in set
of names randomly samples across set of name frequencies
ranging from 3 to 400. The best fitting regression curve
(shown as a solid line in the figure), given by

can then be used to estimate the prior by

From the figure it is clear that for any given name fre-
quency the points vary dramatically, implying that this esti-
mate comes with a high variance. This is expected because
some people have published many articles (over 1,000),
whereas others have published very few.

The third approach is based on the predicted proportion
of matches. Once the set of pairwise probabilities have been
computed, one can update the estimate simply by the number
of pairs labeled matches (with a match probability � 0.5)
divided by the total number of pairs. This estimate can be
used at any stage when a new set of match probabilites are
generated.

Step 4: Updating pairwise probabilities based on three-
way “geometric” probability constraints. Suppose we are

Pr5M6 �
Pr5xa6 � 0.866

0.404 � 0.866
.

Pr5xa6( frq) � 0.338 � 0.00162 frq � 0.00000206 frq2,

given three papers A, B, and C where the pairwise model
estimates the match probabilities to be Pr{A and
B match} � p1, Pr{A and C match} � p2, and Pr{B and
C match} � p3. Let p(i) denote the ith largest value (for i �
1, 2, 3) of three probabilities {p1, p2, p3}. Because two out of
three pairwise matches is not possible and because of the
laws of probability the following constraint has to be satis-
fied: p(3) � p(2) � p(1) � 1. Yet empirically we sometimes
observe cases where this constraint is violated: If two papers
that both have a high probability of match (e.g., 0.9 and 0.8)
to a third paper, that nevertheless have a low estimated prob-
ability of match (e.g., 0.2) to each other based solely on
pairwise comparisons. In the case when the constraint is
violated, the two larger probabilities should be made
smaller, while the smaller probability should be made larger.
This can be accomplished by solving the following least-
squares problem:

where denotes our adjusted estimate for p(i). When the
constraint is not violated, stays the same at p(i), otherwise
they are updated by substituting into
the objective function and setting its gradient to 0, resulting
in the following updates:

Here, the weighting factor w, allows for adjusting the
magnitude of change in the lowest probability relative to
the two larger probabilities. The correction is weighted more
heavily on the low value, reflecting the fact that comparisons
with high probability values also have higher confidence than
those with low values. The greater value assigned to w, the
greater the lower probability has to be increased relative to
the two larger probabilities. For example, {0.8, 0.2, 0.9}, then
p(1) � 0.9, p(2) � 0.8, p(3) � 0.2, and the constraint is violated
because 0.9 � 0.8 � 1 � 0.7 � 0.2. Therefore, the probabil-
ities are updated to

0.733, 0.633, 0.367, when w � 1
0.775, 0.675, 0.450, when w � 2,
0.829, 0.729, 0.557, when w � 5, and
0.858, 0.758, 0.617, when w � 10.

In general, the high probability estimates are more accu-
rate than the lower ones, because we know that many pairs
of papers by the same individuals have very little in com-
mon, while very few papers by different people have very
much in common. Therefore, the weight factor w should be
higher than 1. The effect of the weight factor is analyzed in
the section titled “What is the optimal geometric constraint
weight factor?”.

 p̂(3) � [wp(1) � wp(2) � 2p(3) � w]�(2 � w)

 p̂(2) � [(1 � w)p(2) � p(1) � p(3) � 1]�(2 � w)

 p̂(1) � [(1 � w)p(1) � p(2) � p(3) � 1]�(2 � w)

p̂(3) � p̂(2) � p̂(1) � 1
p̂(i)

p̂(i)

subject to p̂(3) � p̂(2) � p̂(1) � 1� (p̂(3) � p(3) )
2

minimize w(p̂(1) � p(1) )
2 � w(p̂(2) � p(2) )

2
FIG. 1. The proportion zero profiles observed for each name frequency
varies greatly across names.
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Summary: The Complete Matching Model

The complete model fitted to the training data gener-
ated from Medline can now be stated mathematically as
follows:

where

r̂(x1, x2, . . . , x9) � (x1) (x2) (x7)
r̂a(x3, x4, x5, x6, x8, x9), and

Pr{M} is estimated for a given name.

The values for (x1), (x2), and (x7), and a sample of
r̂a(x3, x4, x5, x6, x8, x9) as generated from the match and
nonmatch are presented in the next two sections. Pr{M} is
initially estimated either based on the zero profile fre-
quency by

or (0, 0, 0, 0, 0, 1).

After all the pairwise match probabilities are computed,
the prior is updated by the predicted proportion of matches:
number of pairs with Pr{M 0 x} � 0.5 divided by the total
number of pairs. Then a final adjustment of the pairwise
match probabilities are imposed by the geometric three-way
constraints.

The estimated values for Pr{M 0 x} can be used to rank all
the articles relative to one of the articles by decreasing prob-
ability of match. One can also label a pair a match if
Pr{M 0 x} is greater than some threshold p. If the penalty for
labeling a match a nonmatch is the same as the penalty for
labeling a nonmatch a match, then using a cut-off of p � 0.5
is natural. This cutoff would also maximize the expected
accuracy across Medline as a whole. Alternatively, one can
use an intermediate category of so-called unassignables
that have a match probability close to 0.5 (e.g., 0.5 �

Results

Distributions of the Individual Similarity Scores Within
the Reference Sets

The section on Defining the Similarity Profile defined
nine similarity scores that were thought to be potentially use-
ful in discriminating between matching and nonmatching au-
thor names. From the generated reference sets, their individ-
ual distributions were computed. Table 2 shows how the
individual similarity scores distribute within the match and
nonmatch sets. Each row gives the distribution of a similarity

d � Pr5M 0 x6 � d � 0.5).

Pr5M6 �
Pr5xa6 � 0.866

0.404 � 0.866
,  for  xa � (0, 0, 0, 0, 0, 0)

r7r2r1

r7r2r1

Pr5M 0 x6 �
1

1 �
1 � Pr5M6

Pr5M6r(x)

,

score xi within the match set and the nonmatch set, and
gives the associated r-values estimated by for xi �
0, 1, . . . , 5. For example, the row labeled title w/
small stoplist, gives the proportions 0.6485, 0.2114, 0.08181,
and so forth, of the pairs in the match set that have 0, 1, 2, and
so forth, title words in common after using PubMed’s stoplist
of 365 words. It is interesting to notice that nonmatches
rarely have something in common other than language.

The ratio quantifies how each similarity score xi

affects the match probability when one knows nothing about
the other scores. Figure 2 shows a visual of these ratios, ex-
cluding the title score for the medium and large stoplists, and
the affiliation(s) not given score (x9). Notice that the y-axis is
given on an exponential scale. It is therefore clear that as the
value of each xi increases, the ri(xi), and consequently
Pr{M 0 xi} increases exponentially.

Figure 2 also shows how the individual similarity scores
fare against each other. The number of common coauthor
names seems to be the most important, followed by journal
name match, and then middle name initial match. It is inter-
esting that coauthor is the most important single parameter
in the model, despite the fact that we are performing a match
on their names without disambiguating whether they corre-
spond to the same individual or not; this potential ambiguity
does not seem to be limiting in practice. Although suffix
matches are important they are rare and, as such, less useful.
The number of common affiliation words, title words and
MeSH are tied in fourth place. The flipside is that MeSH,
title, and affiliation words are more often in common than
coauthor names or journal, and therefore all the variables
together will provide a more powerful similarity measure.

Interactions Among Article Similarity Profiles

Figure 3 shows the estimated values for the ratio ra(xa) on
a sample of the most frequently observed article similarity
profiles on the four lower-most levels of the partially ordered
set (or poset for short). The profiles not shown in the figure
succeed these profiles, and, as such, will have greater (xa)
values. Each vertex in the poset gives the profile in the form
xa � (x3, x4, x5, x6, x8, x9) and the associated ratio (xa) is
shown below the vector. The lines connecting the vertices
represent the precedence relation �. For example, the profile
labeled (010000) corresponds to a match on journal only and
was estimated to have an r-value of 11.66.

The Case of C Friedman

Let us illustrate how the model works for a typical exam-
ple of an author disambiguation task in Medline. Although
the 2002 baseline release of Medline lists a total of 401
papers with the name C Friedman (with middle initial given
or lacking), only the 248 articles that give affiliations are
considered here, to allow for accurate manual disambigua-
tion. The C Friedman papers were manually disambiguated
and found to comprise 21 distinct individuals (14 with two
or more papers: Charles P (59), Craig D (47), Chad I (32),

r̂a

r̂a

ri(xi)

Pr5x3 0M6
ri(xi)
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TABLE 2. Distributions of the match, and nonmatch sets over the individual similarity scores.

Number of
attributes in
common 0 1 2 3 4 5

Pr{x1 0M} init2 0.00556 0.03004 0.5102 0.4542
Pr{x1 0N} 0.4143 0.3231 0.2313 0.03130

0.01343 0.09295 2.2058 14.5140

Pr{x2 0M} suffix 0.9978 0.00204
Pr{x2 0N} 0.9999 8.4*10�6

0.9978 242.16

Pr{x3 0M} title w/ 0.6485 0.2114 0.08181 0.03290 0.014185 0.005847
Pr{x3 0N} small 0.9019 0.08986 0.007290 0.0008554 0.0001062 0.000017223

stoplist 0.7191 2.353 11.22 38.46 133.5 339.5

Pr{x3 0M} title w/ 0.8006 0.1438 0.04243 0.009326 0.002702 0.0007640
Pr{x3 0N} medium 0.9930 0.006691 0.0003200 0.00001665 0.000001197 0.0000001023

stoplist 0.8063 21.49 132.6 560.0 2,258 7,466

Pr{x3 0M} title w/ 0.8147 0.1391 0.03709 0.007060 0.001516 0.0003961
Pr{x3 0N} large 0.9935 0.006178 0.0002927 0.00001360 0.0000007408 0.00000004672

stoplist 0.8200 22.51 126.7 519.2 2,046 8,478

Pr{x4 0M} jrnl 0.8875 0.1125
Pr{x4 0N} 0.9989 0.001087

0.8885 103.5

Pr{x5 0M} coauth 0.8421 0.1137 0.02859 0.009615 0.003585 0.001425
Pr{x5 0N} 0.9998 0.0002313 0.000005862 0.000001126 0.0000003671 0.0000001313

0.8423 491.7 4,877 8,542 9,766 10,855

Pr{x6 0M} mesh 0.8077 0.1191 0.04334 0.01729 0.007159 0.003035
Pr{x6 0N} 0.9685 0.02830 0.002690 0.0004202 0.00008356 0.00001796

0.8340 4.207 16.11 41.13 85.68 169.0

Pr{x7 0M} lang 0.000075 0.02872 0.9527 0.01849
Pr{x7 0N} 0.03797 0.3302 0.6263 0.005515

0.001974 0.08700 1.5211 3.3532

Pr{x8 0M} affl 0.8200 0.02888 0.03490 0.03725 0.03456 0.01968
Pr{x8 0N} 0.9853 0.01271 0.001565 0.0003449 0.00009476 0.00002390

0.8323 2.272 22.30 108.0 364.7 823.3

Pr{x9 0M} affl(s) 0.2561 0.7439
Pr{x9 0N} not 0.2815 0.7185

given 0.9095 1.0354r9(x9)

r8(x8)

r7(x7)

r6(x6)

r5(x5)

r4(x4)

r3(x3)

r3(x3)

r3(x3)

r2(x2)

r1(x1)

Carol (30), Cynthia L (20), Carl J (13), Candace (12), Cindy
R (7), Carolyn S (5), Charles A (6), Carola P (4), Clive S (2),
CH (2), and C1 (2), and 7 people with only one paper each:
Catherine R, Constance, Colleen B, C2, CA1, CA2, and CT).
Some of the first names were found by searching other bibli-
ographic databases (EBSCO, Ovid, and ScienceDirect), and
searching for lists of publications on personal or institutional
home pages using Google. As a result, partial lists of papers
for Charles P (personal CV online), Craig D (coauthor’s list
of publications), Chad I (personal home page), Carol
(personal home page), Cynthia L (laboratory home page),
Candace (Community of Science® profile), and Carolyn S
(personal home page) were identified. If nothing was found
on the individual they were judged to be matches or non-
matches based on all the information available in the Med-
line record, and considering the groups of the other papers
known to be by the same person.

0 1 2 3 4 5
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FIG. 2. Distributions of the r-values for the individual similarity scores.
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Carol Friedman, who is currently affiliated with both the
Medical Informatics Department at Columbia University
and the Computer Science Department at Queens College
CUNY, has published numerous articles in the area of med-
ical informatics that are indexed in Medline. On the other
hand, Charles P. Friedman, currently of the Center for Bio-
medical Informatics at the University of Pittsburgh, has also
published extensively on similar topics and in overlapping
journals, and his middle initial is sometimes omitted. Fur-
thermore, there are at least three additional papers in Med-
line with the name C Friedman who also have New York
affiliations.

Shown in Figure 4 is one of several pairs of articles
(where one has Carol as a coauthor, while the second has
Charles P as a coauthor) that shared journal name and
2 MeSH terms, where the pairwise model assigned a low
match probability (0.2). This demonstrates the benefit of
bringing interactive effects into the model. According to the
model, the two MeSH terms do not increase the r-value
when the journal already matches (see profiles 01000 and
010200 in Figure 2). If MeSH was assumed to be indepen-
dent of journal, then 2 MeSH terms would yield an increase
by a factor of 16.11 (see MeSH row in Table 2), and as a
result, the assigned match probability would be close to 0.9,

FIG. 3. The estimated r-values over a subset of the most frequently observed article similarity profiles in the reference sets.

PMID: 7895136
Title: A continuous-speech interface to a decision support system: II. An evaluation using a Wizard-of-Oz
experimental paradigm.
Authors: Detmer WM, Shiffman S, Wyatt JC, Friedman CP, Lane CD, Fagan LM
Affiliation: Section on Medical Informatics, Stanford University School of Medicine, CA 94305-5479.
Journal: J Am Med Inform Assoc. 1995 Jan-Feb;2(1):46-57.
MeSH: - Adolescent; Algorithms; Animal; *Decision Making, Computer-Assisted; Dogs; Human; *Natural
Language Processing; Prospective Studies; Reference Values; Semantics; Speech; Support, Non-U.S. Gov’t;
Support, U.S. Gov’t, P.H.S.; Terminology; *User-Computer Interface

PMID: 7719797
Title: A general natural-language text processor for clinical radiology.
Authors: Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB.
Affiliation: Columbia University, New York, NY, USA.
Journal: J Am Med Inform Assoc. 1994 Mar-Apr;1(2):161-74.
MeSH: Diagnosis, Computer-Assisted; Human; Medical Records; *Natural Language Processing; *Radiology
Information System; Semantics; Support, Non-U.S. Gov’t; Support, U.S. Gov’t, P.H.S.

FIG. 4. A pair of nonmatching papers (one by Carol and one by Charles P) that share several similarities.
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and labeled match (unless the triplet adjustment would have
fixed it).

Shown in Figure 5 is a pair of articles (one has Cynthia L
Friedman as a coauthor, while the second has Carl J Fried-
man as a coauthor) where the affiliation of the first author on
both papers is Johns Hopkins Oncology Center, Baltimore,
Maryland. Both articles are missing middle initials, and both
are on the subject of cancer research published in similar
journals (although Cynthia’s is on genetics and Carl’s is a
clinical drug trial). As expected, before the geometric con-
straints are enforced, the model estimates the probability of
match to be very high (0.99). However, after the geometric
constraints are enforced, the model estimates the match
probability to be 0.3. This shows that, in addition to bringing
many of the true matches together, the triplet adjustment
also helps separate the nonmatches.

The manual disambiguation can be used as a gold stan-
dard to evaluate the performance of the model based on the
following measures:

Precision � the total number of distinct pairs correctly
labeled as matches divided by the total number of distinct
pairs labeled as matches

Recall � the total number of distinct pairs correctly labeled
as matches divided by the total number of distinct pairs
of true matches

Accuracy � number of distinct pairs correctly labeled
(as matches or nonmatches) divided by the total number
of distinct pairs

These measures can be thought of as the retrievals aver-
aged over all distinct pairs of papers, where each paper rep-
resents a query, and the other papers are retrieved if their
match probabilities are above 0.5. For example, in the case
of C Friedman, the pairwise model (using an estimated prior
of 0.122 and geometric constraint weight factor of 4—the
following sections show how these parameters were ob-
tained) labels a total of 3,836 pairs labeled matches, out
of which 3,778 are true matches and 58 pairs are true
nonmatches, for which precision � 98.5%, recall � 91.9%,
and accuracy � 98.7%.

Figure 6 shows the distribution of match probabilities in
this case. Note that the y-axis was cut off at 1,500, to be able
to see the low frequencies, albeit some of the frequencies
do go above. It is clear that the model correctly assigns the
great majority of the matches with high match probabilities
and the great majority of the nonmatches with low match
probabilities.

What is the best way to estimate Pr{M}? Out of the 30,628
distinct pairs of papers in the C Friedman case, there are
4,112 that we know are matches and 26,516 that we know
are nonmatches. That is, the true a priori probability of
match is Pr{M} � 0.134. This value can be used as a gold
standard to assess the quality of the different estimates given
in Table 3. The estimate based on name frequency alone
is about 4 times greater than the true value, showing, as
expected, that it comes with a high variance. The estimate
based on the zero profile frequency 0.205 is more accurate
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FIG. 6. The distribution of match probabilities in the C Friedman articles
after using the estimated Pr{M} of 0.122 and a geometric constraint weight
factor of 4.

PMID: 7882309
Title: Assignment of the human p27Kip1 gene to 12p13 and its analysis in leukemias.
Authors: Pietenpol JA, Bohlander SK, Sato Y, Papadopoulos N, Liu B, Friedman C, Trask BJ,
Roberts JM, Kinzler KW, Rowley JD, et al.
Affiliation: Johns Hopkins Oncology Center, Baltimore, Maryland 21231.
Journal: Cancer Res. 1995 Mar 15;55(6):1206-10.

PMID: 8646710
Title: A double-blind comparison of the efficacy of two dose regimens of oral granisetron in preventing acute
emesis in patients receiving moderately emetogenic chemotherapy.
Authors: Ettinger DS, Eisenberg PD, Fitts D, Friedman C, Wilson-Lynch K, Yocom K
Affiliation: The Johns Hopkins Oncology Center, Baltimore, Maryland 21287, USA.
Journal: Cancer. 1996 Jul 1;78(1):144-51.

FIG. 5. A pair of nonmatching papers (one by Cynthia L and one by Carl J) that share several similarities.
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(53% higher than the true value) because it takes into
account the similarity of the C Friedman articles. Using this
0.205 in computing the pairwise probabilities yields 0.104
predicted proportion of matches, which is 22% below the
true value. Using 0.104 as the prior and enforcing the geo-
metric constraints yields a final estimate of 0.122, which is
only off by 9%. In summary, the model is robust to inaccu-
rate initial estimates because the majority of articles by the
same people have very high match probabilities, and the ma-
jority of articles by different individuals have very low
match probabilities, especially after imposing the three-way
geometric constraints.

What is the optimal geometric constraint weight factor?
Figure 7 shows the precision, recall, and accuracy of the
model as a function of the “geometric” probability constraint
weight factor w, using the true a priori match probability
0.134. In comparing all triplets of the 248 C Friedman pa-
pers, only about 1% violate this constraint, and most of these
violations occur when comparing three papers authored by
the same individual. For example, more than 60% of the

triplets coming from Carol’s 30 papers violate this con-
straint. Therefore, w should be set higher than 1. Based on
Figure 7, the precision and recall break point occurs when w
is 8, although this varies from name to name. One may also
argue that the cost of incorrect labels are higher for true non-
matches than for true matches, implying that w should be set
lower than the break point.

What happens when the match set is contaminated with
nonmatches? Figure 8 shows how the precision and recall
are affected when the r-values are adjusted to reflect cases
when the match set is contaminated with a fixed proportion
p of nonmatches as follows:

We believe that the true level of contamination of the
match set with nonmatches is probably very small (0.1% or
less). However, even high levels of contamination (up to
10%) do not have a significant effect on recall and precision
(Figure 8). This is a consequence of the fact that the major-
ity of matches are assigned a high match probability and the
majority of nonmatches are assigned a low high match prob-
ability (as shown in Figure 6).

Evaluation of the Fitted Model

There are three major criteria that need to be satisfied for
the probability model to work well. In this section, these cri-
teria are outlined and evaluated, and their resulting benefits
and possible pitfalls are discussed.

Criterion 1: Is the similarity profile definition “the best
possible”? The goal is to define a similarity profile that is
as simple as possible while capturing as much information

 � (1 � p)r(x) � p.

 rnew(x) � (Pr5x 0M6 (1 � p) � Pr5x 0 N6p)�Pr5x 0 N6
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FIG. 7. The performance of the model in the case of C Friedman across
different values for the geometric constraint weight.

TABLE 3. Different estimates for the a priori probability of match Pr{M}
in the case of C Friedman.

Method Estimated Pr{M}

True value 0.134
Based on name frequency 0.550
Based on zero profile frequency 0.205
Predicted proportion of matches 0.104

—using 0.205 prior, without enforcing three-way
geometric constraints

Predicted proportion of matches 0.122
—using 0.104 prior, and 4 for the three-way
geometric constraint weight
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contamination.
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necessary to create authorship fingerprints. This section ad-
dresses the issue of whether there is additional information
available in the Medline records or other information pro-
cessing methods that may be useful for matching authors.

Criterion 1a: Are there other attributes present in the Med-
line records that may be useful? We included as much in-
formation available in Medline as was thought to be useful.
In the process of defining the best possible set of similarity
scores, two attributes ended up being excluded, namely, the
position on the article (e.g., first or last author) and presence
of non-ASCII characters (e.g., Æ) in their last name. The
two authors’ orders may yield a slight decrease in probabil-
ity of match when they are both first and there is nothing else
in common between the two. However, this decrease was not
significant enough to include in the final model. Also, a mis-
match between two non-ASCII last names was so rarely
observed in the reference sets that it was not included in the
final model.

Criterion 1b: Why not weight the words by specificity?
Some may argue that words should be weighted by their
specificity (Salton, Wong, & Yang, 1975; Wilbur & Yang,
1996). For example, the MeSH term “child” should carry
less weight because it less specific compared to other terms
such as “schizophrenia.” However, allowing for weights
leads to a continuous domain for the similarity scores and
makes multivariate analysis difficult without imposing fur-
ther assumptions on the model such as linearity or indepen-
dence. These assumptions are too restrictive and will lead to
inappropriate estimates (see Criterion # 3). Even if it is pos-
sible to weight the terms, it will make the matching rules
more complex and hard to evaluate manually. It is much eas-
ier just to count the number of terms in common without
having to weight each term.

To address the issue of term weighting, the results of
three different stoplists (small, medium and large) on the
title words were compared. The words added to the larger
stoplists, would be weighted lower than the ones that are on
the smaller stoplist. In this sense, varying the extent of sto-
plisting captures the idea of a simplified weighting scheme.
When the medium stoplist was applied to the match set, the
frequency of the case having no title words in common in-
creased from 64.9% to 80.1%, and as a result the r-value for
1 or more common title words increased by about 10 times.
This creates a dilemma because a higher r-value is more
indicative of a match, but at the cost of about 15% pairs of
matches that lose all the title words they had in common.
Even though these words are frequent in Medline, they may
be important for disambiguation. In a weighting scheme the
word “cell” will receive much smaller weight than the word
“5-HT,” for example, but within a population of authors that
share a name, both words may be just as important. For ex-
ample, if the population consists of a single person with lots
of papers that use the word “cell,” then that word will be
important and should carry a high weight. In general, the

problem is to find items in common because even articles
written by the same individual only have something in com-
mon on either title, journal, coauthors, MeSH, or affiliation
only about 60% of the time, on average. A weighting scheme
could potentially remove important connections.

Criterion 1c: Potential ways to improve the similarity profile?
Our model could definitely benefit from supplementary infor-
mation not present in Medline but available from other
sources such as the Web and journal publishers. For example,
it would be very useful to have the first names spelled out, as
well as the list of affiliations and which author name each cor-
responds to (instead of just the first author’s affiliation as
given in Medline). As well, reference citations are not in-
cluded in Medline, although they may play an important role
in matching authors because people often cite themselves.

It remains for future investigations to assess whether the
model could be significantly improved by phrase processing
or employing natural language processing techniques to de-
fine a disciplinary metric of similarity for MeSH or titles, or
a geographic distance metric for affiliations (Churches,
Christen, Lim, & Zhu, 2002). The title, MeSH, and affilia-
tion fields may potentially benefit from a metric that is able
to capture the similarity of words that are written differently.

Criterion 2: Do the reference sets accurately and unbiasedly
represent Medline? The reference sets build the founda-
tion for the probability model, and it is therefore essential
that they unbiasedly and accurately represent Medline as a
whole. Ideally, one would want to compute the exact proba-
bility distributions Pr{x 0M} and Pr{x 0N}. Exact computa-
tions are practically impossible as they would require indi-
viduals encoded in the database, which is the goal in the first
place. Traditionally, the matching process would be done
manually or by selecting small, possibly biased subsets. In
contrast, we chose to generate large reference sets in an
automatic manner.

The key to reducing bias is to make sure that (1) the pro-
portion of matches and nonmatches is very high in match sets
and nonmatch sets, respectively, and (2) the reference sets do
not contain a population of names whose similarity profile
distributions vary significantly from the overall distributions.
The article attribute match set was generated from author
names that contained suffixes with an average r-value greater
than 3,500. As we show next, the presence of suffixes is more
common in English-speaking population groups, but other-
wise provides a broad slice of Medline and is not biased on
other attributes. The article attribute nonmatch set was gen-
erated by comparing author names with different last names
and, as such, excludes matches altogether. The name at-
tribute reference sets were also randomly selected from Med-
line as a whole and the targeted matches and nonmatches
were defined by article similarity scores that yielded high
r-values (�5,000) and low r-values (�0.01), respectively.

As Table 4 shows, the MeSH, title word, and affiliation
distributions in the suffix set are quite similar to that of
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FIG. 9. Pairwise interactive effects of the article similarity scores. In each plot, the y-axis corresponds to the ratio r(xi, xj), where xi is the value of the row
attribute and xj is the value of the column attribute. The x-axis corresponds to the value of the column attribute, and the legends (shown on the bottom right)
indicate the value of the row attribute. Within each panel, pairwise interactions are independent when the set of curves run parallel to each other, are positive
when the set of curves tend to diverge (going from left to right), and are negative when they tend to converge.

Medline as a whole. However, 99.6% of the articles in the
suffix set were originally written in English versus 76.7% in
Medline overall. Clearly, the suffix set is biased towards
English articles. We overcame this by generating a separate
language match set and incorporating the resulting language
similarity score into the model based on the criterion that it
is independent of the other article similarity scores.

Criterion 3: Could a linear or an independent model
perform as well? In general, the multivariate distribution
tends to enhance the effect of comparing matches to non-
matches. When matches have something in common, they
tend to have several items in common, and this phenomenon
does not occur for nonmatches. In other words, the positive
correlation between variables tend to be higher for matches,
than for nonmatches. For example, most journals are only
published in one language, suggesting that most often when
a match has the journal name in common, it also has the lan-
guage in common more often than nonmatches. Figure 9
shows the pairwise interactive effects of the article similarity
scores. Although this figure is complex, the observations
made from the figure can be summarized as follows:

1. Affiliation(s) not given is the only similarity score that
has a positive interactive effect with each of the other
scores. That is, it tends to enhance the effect of the other
variables, even though it is not very useful by itself. For

example, if there are no affiliation words in common,
then a match is less likely if both affiliations are given,
than if one or both are missing.

2. The journal, MeSH, and title similarity scores have neg-
ative interactive effects on matching. It is intuitive that
articles within a particular journal have similar title
words and MeSH terms more so than different journals.
It also makes sense that title words and MeSH have a
redundant effect because both describe the topic of the
article. Therefore, having MeSH terms in common does
not add as much when the articles already have title
words in common, and vice versa.

3. The effect of the affiliation similarity score is indepen-
dent of the title, MeSH, and journal scores. This can be
observed by the parallel curves in the column corre-
sponding to affiliation. As a result, affiliation is more
powerful for disambiguation, even when articles have
title, MeSH or even journal in common.

These observations suggest that imposing linearity or in-
dependence constraints on the model may be inappropriate.
To fully appreciate this fact, two alternate models were fitted
to the training data, namely, a log-linear model and a product
model, which assumes independence among all the similar-
ity scores. The log-linear model was fitted using forward
variable selection of all main effects and all possible interac-
tive effects using S-Plus 6.1 (Insightful Corp, Seattle, WA).
Each profile xa was weighted by the number of times it was
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observed in the match set and nonmatch set (i.e., m(xa) �
n(xa). This resulted in the following model:

yielding a multiple R2 of 0.9854. However, this model does
not satisfy the monotonicity criterion because of the nega-
tive interactive effects. For example, the title score (x3) will
have a negative effect when there are four or more MeSH
terms (i.e., x6 �4) in common.

The product model is based on the assumption that the
similarity scores act independently in their effect on the
probability of match, and the r-values are estimated by

where the individual (xi) functions are taken from Table 2.
This model does satisfy the monotonicity criterion; however,
it is unable to capture the interactive effects of the article
attributes.

Figure 10 shows a plot of the estimated versus the ob-
served r-values for the three different models. The size of the
points is proportional to the logarithm of the observed fre-
quency in the nonmatch set and the match set. Ideally, the
larger points would lie on or near the straight line with slight
variations as a result of sampling. The majority of the log-
linear based estimates above 10 tend to be significantly
lower than the observed values. The product model seems to
have the opposite effect, in that most the estimates above
10 tend by significantly greater than the observed values.
Note that a similar pattern was observed for the log-linear
model when interactions were taken out of the model. In
contrast to the product model and the log-linear model, the

ri

r(x3, x4, x5, x6, x8, x9) � r3(x3)r4(x4)r5(x5)r6(x6)r8(x8)r9(x9),

� 0.47x4x5 � 0.30x4x8 � 0.33x5x8 � 0.11x6x8,

� 1.85x5 � 0.57x6 � 0.82x8 � 0.64x9 � 0.14x3x5

log10(r(x3, x4, x5, x6, x8, x9)) � 0.87 � 0.49x3 � 1.93x4

estimates based on the monotonicity criterion are much
closer to the observed values.

Discussion

Summary of Methods and Results

This article introduces and validates a model for author
name disambiguation that is based on pairwise comparisons
of articles using information that is encoded in Medline
fields. Although the present model takes advantage of fea-
tures that are specific to Medline, the similarity profile
approach outlined here can be applied to a wide variety of
large-scale data-mining tasks and is not restricted to biblio-
graphic or even textual databases. The model has several
noteworthy features: (a) Massive training sets are automati-
cally generated with both positive and negative examples, (b)
nonlinear and interactive effects are incorporated across mul-
tiple variables, (c) the similarity profile is computed as a
probability, whose constraints allow triplet corrections,
(d) the method of counting words in common is simpler to
compute than the calculation of term statistics, (e) the model
is highly intuitive in interpretation—one can see the involve-
ment of each parameter used in the model and its impact on
overall probability value, and (f) the model retains the ability
to incorporate outside knowledge without changing the basic
framework.

An important feature of our approach is that we are not
simply aiming for high performance in disambiguation,
which might be achieved with sufficient brute-force manual
effort or with simple empirical rules of thumb based largely
on matching author attributes (e.g., first names and affilia-
tions). Rather, the premise is to disambiguate papers in a
manner that is not only automatic, but that permits analyzing
fundamental patterns of publishing behavior. Including arti-
cle attributes such as MeSH headings, title words, journal,
language, and coauthors allows one to ask how many papers
are published per person per year on average, how strong
is the tendency to publish in the same journal over time,
and how often scientists collaborate across disciplines or
institutions—both across Medline as a whole and in selected
subgroups of scientists. Thus, the model should be useful
even if one has a list of papers that are known to be written
by a single individual. If one takes one paper as the index
paper for comparison, all of the other papers can be ranked
in order of similarity, in a manner that maps the multidimen-
sional nature of the Medline fields onto a single parameter.
This ranking can serve as the basis for clustering an indi-
vidual’s papers by overall similarity, and for identifying
“outliers” that differ significantly from the others, e.g., when
individuals have moved, changed fields, or collaborated
widely with many other groups.

The observed similarity profile distributions were very
different in the match vs. nonmatch sets, and the test case of
C Friedman showed very high precision (�98.5%), recall
(�91.9%), and accuracy (�98.7%), suggesting that the
present model is, indeed, adequate for disambiguating the
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FIG. 10. The distribution of the residuals for the quadratic programming,
log-linear, and product models.
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majority of articles, even though we did not encode first
names or affiliations of each author. Although the match set
is generated automatically and hence might contain a small
proportion of nonmatches (�0.1% or less), we found that
the model is quite robust: Even if the match set were to be
contaminated with up to 10% nonmatches, this would not af-
fect performance detectably in terms of precision and recall.

The most powerful measure for distinguishing matches
from nonmatches is the number of coauthor names in com-
mon, followed by match on journal name, and then middle
name initial match. Although suffix matches are important
they are rare and as such less useful. The number of common
affiliation words, title words, and MeSH are tied in fourth
place. However, the affiliation similarity score tends to be
independent of the journal, title, and MeSH similarity
scores, indicating that it is more powerful for disambigua-
tion when articles already have other items in common.

Planned Steps for Creating Author-Individual Clusters:
Clustering Algorithms, Supplemental Information, and
Assessing Name Variations

The present model for estimating the pairwise match
probabilities is not intended to give optimal performance by
itself. Rather, it is just the first of several planned steps to-
ward our long-term goal of completely partitioning Medline
into unique authors.

Because it is likely that supplementary information will be
necessary to fully disambiguate author names, in the second
step, we will supplement the Medline database with infor-
mation extracted from personal and publishers’ Web pages
(Lawrence, Giles, & Bollacker, 1999).Author first names, af-
filiations and e-mail addresses will be obtained from online
providers, when available, for all authors (not just the first au-
thor). We also plan to attempt to find online lists of publica-
tions by that individual. Such lists cannot be used as a pri-
mary means of disambiguation because they are often
missing, incomplete, include non-Medline articles, and/or
are not up to date. Yet they do provide a “gold standard” for
validating that different articles on the list are written by the
same person, and for identifying situations where two differ-
ent author-individual clusters refer to the same individual.

Because one can expect much better results when a clus-
tering strategy is used in addition to pairwise comparisons,
in the third step, clustering algorithms (e.g., Jain & Dubes,
1988; Karypis, Han, & Kumar, 1999; Taskar, Segal, &
Koller, 2001) will be employed on papers bearing the same
(last name, first initial) to form clusters of papers that can be
assigned to distinct author-individuals. The distribution of
pairwise probabilities within a set of papers belonging to a
specific name will provide constraints that allow one to ad-
just the estimated pairwise probabilities more accurately.

The most common reason that a paper may be misas-
signed is probably caused by missing data, but sometimes
the journal prints the wrong name spelling or the wrong mid-
dle initial. As well, some names can be written in several dif-
ferent ways, for example, oriental names such as Wei Zhang

are spelled Zhang Wei in some journals, and Medline some-
times indexes the first name as the last name. Hispanic and
Slavic hyphenated surnames are often written in multiple
nonstandard ways (Ruiz-Perez, Delgado Lopez-Cozar, and
Jimenez-Contreras, 2002). In the fourth step, we plan to see
whether changing the first and middle initials, the spelling of
the last name (using a short edit distance), or reversing the
first and last names would result in a high probability of
match with some larger cluster with that name.

Although full disambiguation may never be possible
using automatic methods alone, the approaches outlined in
the present paper should greatly improve the efficiency of
Medline searches on the author field, bibliometric studies
(e.g., citation rankings), and characterizing individual scien-
tists’ authorship profiles and their collaboration networks
over the medical literature.

Concluding Remarks

We have created a free, public service (“Authority”:
http://arrowsmith.psych.uic.edu) that takes as input an
author’s last name and first initial given on a specific article
in Medline, and gives as output a list of all articles with that
name ranked by decreasing similarity, with match proba-
bility indicated.
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