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Abstract. Machine rule induction was examined on a difficult categorization problem by applying a Holland- 
style classifier system to a complex letter recognition task. A set of 20,000 unique letter images was generated 
by randomly distorting pixel images of the 26 uppercase letters from 20 different commercial fonts. The parent 
fonts represented a full range of character types including script, italic, serif, and Gothic. The features of each 
of the 20,000 characters were summarized in terms of 16 primitive numerical attributes. Our research focused 
on machine induction techniques for generating IF-THEN classifiers in which the IF part was a list of values 
for each of the 16 attributes and the THEN part was the correct category, i.e., one of the 26 letters of the alphabet. 
We examined the effects of different procedures for encoding attributes, deriving new rules, and apportioning 
credit among the rules. Binary and Gray-code attribute encodings that required exact matches for rule activation 
were compared with integer representations that employed fuzzy matching for rule activation. Random and genetic 
methods for rule creation were compared with instance-based generalization. The strength/specificity method 
for credit apportionment was compared with a procedure we call "accuracy/utility." 

Keywords. Category learning, parallel rule-based systems, exemplar-based induction, apportionment of credit, 
fuzzy-match rule activation. 

H u m a n  experts often solve difficult problems quickly and effortlessly by categorizing com- 

plex situations as special cases of familiar paradigms and applying solution strategies that 

are known to be effective for these paradigms (de Groot ,  1965; Chase & Simon,  1973). 

Problem solving in this context involves part i t ioning a complex task into two components  

that can be solved independent ly  and executed in a serial fashion. The first component  
consists primari ly of categorization. Humans  acquire this ability after many years of observ- 

ing a wide-range of related examples. The expert 's  skill seems to be based pr imari ly  on 
memory  for past experiences rather than on logical deduct ion or symbolic reasoning 

(Charness, 1981). The second component  involves associating one or more action sequences 

with each of the categories. The problem solver has a large repertoire of  well-practiced 
action routines that can be selected and applied in  a way that is appropriate for the initial 
categorization decision.  

Our  research focuses on the first componen t  of the above paradigm. We examine a com- 
puter system that induces general categorization rules within a supervised learning paradigm. 
A large n u m b e r  of unique  examples are presented to the system along with an outcome 
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measure that indicates the appropriate category for each example. Our test implementation 
involves 26 categories and 20,000 unique test patterns. 

In this article we describe an adaptive classifier system similar in many respects to the 
approach pioneered by Holland (1975, 1976, 1980, 1986). These systems create a list of fixed- 
length condition-action rules (i.e., classifers) that are applied in parallel to "messages" 
representing the presence or absence of specific features in the current environment. There 
are typically three major parts: a performance algorithm that compares rules with messages 
to determine which rule(s) should be activated, a reinforcement algorithm that modifies 
the strength of each rule on the basis of its "fitness" in the current environment, and a 
rule-creation algorithm that generalizes exemplars or combines current rules to produce 
new ones. In a supervised learning categorization task, the effectiveness of each rule can 
be determined directly, because there is immediate feedback on each training trial. Therefore, 
it is not necessary to use Holland's bucket brigade, which is normally employed to address 
the complex credit allocation problem that arises when there is intermittent feedback. The 
simplification of the "standard" Holland approach used for this application is very similar 
to the modifications made by others for studies on category learning (Wilson, 1985, 1987, 
1988, Davis & Young, 1988). 

1. Characters and attributes 

To test our methodology, we selected a difficult classification task. The objective was to 
identify each of a large number of black-and-white rectangular pixel displays as one of the 
26 letters in the English alphabet. The character images were based on 20 different fonts 
and each letter within these 20 fonts was randomly distorted to produce a file of 20,000 
unique stimuli. Each stimulus was converted into 16 numerical attributes that were in turn 
submitted to our classifier system. The identification task was especially challenging because 
of the wide diversity among the different fonts and because of the primitive nature of the 
attributes. 

The 20 different fonts were designed by Dr. Allen V. Hershey, a mathematical physicist 
at the U.S. Naval Weapons Laboratory. Our local computer center obtained the font set 
from the National Bureau of Standards. In our research, we employed the following Roman 
alphabet fonts: HASTR, HCART, HCITA, HCROM, HCSCR, HDROM, HGENG, 
HGGER, HGITA, HIITA, HIROM, HISYM, HIUMT, HMETE, HMUSI, HSROM, 
HSSCR, HTITA, HTROM, and HUMAT. The fonts represent five different stroke styles 
(simplex, duplex, triplex, complex, and Gothic) and six different letter styles (block, script, 
italic, English, Italian, and German). 

Each item in the character file was generated in the following manner. Twenty thousand 
calls were made to a character-image generating program with random uniformly distributed 
parameter values for font type, letter of the alphabet, linear magnification, aspect ratio, 
and horizontal and vertical "warp." Each character image was first produced in the form 
of vector coordinates of the end-points of its constituent line segments. The specified scale 
changes and "warping" were applied to these coordinates. The line segments were then 
"rasterized" to form a rectangular array of pixels, each of which was "on" or "off." The 
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"on" pixels represented the image of the desired character. These arrays averaged about 
45 pixels high by 45 pixels wide. 

The linear magnification ranged from 1.0 to 1.6. The additional horizontal magnification, 
which changed the aspect ratio, ranged from 1.0 to 1.5. The horizontal warp parameter 
controlled a quadratic transformation of the horizontal coordinates that distorted the horizon- 
tal scale by stretching either the left or right region of the image (and correspondingly 
shrinking the other region). The vertical warp parameter operated similarly in the vertical 
direction. The range of the warp parameters was chosen so that even when their values 
were at the limits of their range, the resulting character images, although rather misshapen, 
were fairly recognizable to humans. 

Examples of the character images generated by these procedures are presented in Figure 1. 
Each character image was then scanned, pixel by pixel, to extract 16 numerical attributes. 
These attributes represent primitive statistical features of the pixel distribution. To achieve 
compactness, each attribute was then scaled linearly to a range of integer values from 0 
to 15. This final set of values was adequate to provide a perfect separation of the 26 classes. 
That is, no feature vector mapped to more than one class. The attributes (before scaling 
to 0-15 range) are: 

1. The horizontal position, counting pixels from the left edge of the image, of the center 
of the smallest rectangular box that can be drawn with all "on" pixels inside the box. 

2. The vertical position, counting pixels from the bottom, of the above box. 
3. The width, in pixels, of the box. 
4. The height, in pixels, of the box. 
5. The total number of "on" pixels in the character image. 
6. The mean horizontal position of all "on" pixels relative to the center of the box and 

divided by the width of the box. This feature has a negative value if the image is "left- 
heavy" as would be the case for the letter L. 

7. The mean vertical position of all "on" pixels relative to the center of the box and divided 
by the height of the box. 

8. The mean squared value of the horizontal pixel distances as measured in 6 above. This 
attribute will have a higher value for images whose pixels are more widely separated 
in the horizontal direction as would be the case for the letters W or M. 

9. The mean squared value of the vertical pixel distances as measured in 7 above. 
10. The mean product of the horizontal and vertical distances for each "on" pixel as meas- 

ured in 6 and 7 above. This attribute has a positive value for diagonal lines that run 
from bottom left to top right and a negative value for diagonal lines from top left to 
bottom right. 

11. The mean value of the squared horizontal distance times the vertical distance for each 
"on" pixel. This measures the correlation of the horizontal variance with the vertical 
position. 

12. The mean value of the squared vertical distance times the horizontal distance for each 
"on" pixel. This measures the correlation of the vertical variance with the horizontal 
position. 

13. The mean number of edges (an "on" pixel immediately to the right of either an "off" 
pixel or the image boundary) encountered when making systematic scans from left 
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Figure 1. Examples of the character images generated by "warping" parameters. 

to right at all vertical positions within the box. This measure distinguishes between 
letters like " W "  or " M "  and letters like ' T '  or "L."  

14. The sum of  the vertical positions of  edges encountered as measured in 13 above. This 
feature will give a higher value if  there are more edges at the top of the box, as in 
the letter "Y." 
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15. The mean number of edges (an "on" pixel immediately above either an "off" pixel 
or the image boundary) encountered when making systematic scans of the image from 
bottom to top over all horizontal positions within the box. 

16. The sum of horizontal positions of edges encountered as measured in 15 above. 

A data file of the 16 attribute values and outcome category for each of the 20,000 stimulus 
items is on file with David Aha (aha@ics.uci.edu). 

2. Learning paradigm 

The set of 20,000 unique letter images was organized into two files. Sixteen thousand items 
were used as a learning set and the remaining 4000 items were used for testing the accuracy 
of the rules. The program traversed the 16,000 learning items 5 separate times, creating 
new rules, discarding unsatisfactory ones, and modifying the performance statistics for each 
rule as appropriate. This process provided 80,000 learning trials. During our preliminary 
investigations, we explored various numbers of passes through the training file, ranging 
from 1 to 20. With the better methods, most of the benefits of training (approximately 80%) 
occurred during the first pass through the 16,000 item data set. We selected 5 passes as 
our standard procedure, because this seemed to provide a reasonable approximation of the 
asymptotic improvement level that could be expected from training. 

When this phase was complete, a sixth pass was performed in which no new rules were 
created. Rules that did not maintain pre-specified performance levels were discarded. This 
"verification" process greatly reduced the number of rules. Each classifier in the final 
group was an important contributor to the overall performance of the system. 

The last step in the process consisted of applying the final rule set to the 4000 test items 
to determine the overall accuracy of the system. The rule set was "frozen" during this test 
phase in that no rule creations, rule deletions, or strength changes took place. The primary 
performance measure for evaluating the different algorithms was the percentage correct 
on the 4000 test items. In addition, measures are reported for the total number of rules 
created during training, the final number of rules after verification, and the mean specificity 
of the rules after verification. 

3. Description of the classifier systems 

Our procedure is based on a typical Holland classifer system that has been modified for 
one-step categorization problems (i.e., no bucket brigade). The processing sequence can 
be summarized as follows: 

1. Compare the attribute vector of a test item with the attribute specifications of each of 
the classifers in the current rule buffer. 

2. Select a match set [M] consisting of all classifers whose conditions are satisfied by the 
test item's attribute vector. 

3. Compute a bid for each classifer in set M. Assign the category associated with the highest 
bidder as the system output. 
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4. I f  in learning phase, modify the performance statistics of one or more classifiers as 
specified by the bidding system algorithm. 

5. If  in learning phase, discard weak rules and create new rules according to the rule crea- 
tion algorithm. 

6. Select the next test item, and repeat the process starting at step 1. 

The primary focus of our research was to examine three different attribute coding proce- 
dures (BIN, GRA, INT), three different rule creation procedures (RAN, GEN, EXM), 
and different bidding systems. In addition, the criterion for rule retention was systematically 
varied for each algorithm to determine how well each method performed under different 
resource constraints. This manipulation influences the size of the rule buffer and indirectly 
determines what level of rule specificity is most suitable. 

4. Attribute coding 

Binary coding (BIN) represents the value of each of the 16 attributes as a 4-bit binary number. 
Each data item (message) is thus a string of 64 (4×16) bits. Similarly, the left-hand side 
of each classifier is a 64-element string, where each position is either a wild card, a 0, 
or a 1. A classifier matches a test item when all of its non-wild card positions are identical 
to the test item. 

Gray coding (GRA) is similar to binary coding, but the mapping of attribute values to 
4-bit codes is different. We employed the procedure described by Goldberg (1989, p. 100). 
Number representation with Gray-codes insures that adjacent values are identical except 
for a change in a single bit. 

Integer coding (INT) represents each of the 16 attributes as an integer. Each data item 
(message) is a 16-position vector in which each position is an integer in the range 0 to 15. 
The left-hand side of each classifier consists of a 16-position vector in which each position 
is either a wild card or a target value for the attribute. With integer coding, we also specify 
a window size for fuzzy matches. A uniform window size is employed for all attributes. 
I f  the window size is set at zero, an exact match is required on all non-wild card attributes. 
If  the window size is set at 1, a classifier matches a test item if the target values for all 
non-wild card attributes are either identical to the value for the test item or are within 1 
unit of that value. If  the window size is set at 2, a classifier matches if the target values 
for all non-wild card attributes are within 2 units of the test item values. Therefore, window 
size determines the degree of fuzziness tolerated in defining a match. Booker (1988, p. 182) 
describes another method for implementing partial matches. In his system, rules that match 
on most, but not all, of the non-wild card attributes can be eligible for the auction. 

5. Rule creation 

Holland et al. (1986) describe a variety of methods for creating new rules, including ran- 
dom generation, two forms of genetic mutation (generalization and specialization), genetic 
crossover, and instance-based generalization. In our research, we examined three of these 
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methods: random generation, exemplar-based generation, and a hybrid procedure that started 
with random rules and evolved offspring from the fittest parents using single-point genetic 
crossovers and specializing mutations. 

In the random procedure (RAN), 3900 rules, 150 for each of the 26 categories, were 
produced prior to the training phase. Each classifier was created by randomly assigning 
wild card status or a uniformly distributed random value to each position in the attribute 
vector and randomly assigning an outcome value (one of the 26 categories). Whenever 
a rule failed to meet a pre-specified performance level, it was immediately discarded and 
replaced by a newly created rule. Successful rules were retained indefinitely by the system. 

In the hybrid procedure (HYB), 3900 rules were initially created as described above. 
When a rule dropped below the minimum performance level, it was immediately replaced. 
On each trial, the replacement process could invoke one of three separate rule creation 
methods. One method was the RAN procedure described above. A second method for creat- 
ing a new rule (MUT), involved selecting a strong rule, randomly selecting one of the 
attributes, and randomly assigning a numerical value between 0 and 15 to that attribute. 
This procedure had the effect of either maintaining the current rule specificity (in cases 
where the selected attribute was already relevant) or of increasing specificity (in cases where 
the selected attribute had previously been a wild card). This property was intentional. The 
rules that were generated by the random procedure needed low specificities in order to 
have even a weak chance of matching test items. The mutation procedure was designed 
to produce an increase in rule specificity in order to enhance the performance of the system. 

The third method for rule creation (CROSS) selected two strong rules, randomly selected 
a single splitting location, and created a new rule by combining components from the left 
and right side of the split. All crossovers were one-point crossovers. To act as a parent 
in methods MUT and CROSS, a rule had to have the same outcome as the rule that was 
being replaced, and its strength had to be higher than the strength it was initially assigned. 
Rules that qualified by these criteria were selected for parenthood randomly in proportion 
to their fitness scores. 

Each time a rule was created by the hybrid procedure (HYB), one of the three methods 
was chosen randomly in the proportion 20% RAN, 60% MUT, and 20% CROSS. When 
MUT or CROSS was selected, but no rules qualified for parenthood, method RAN was 
employed. When CROSS was selected, but only one rule qualified for parenthood, method 
MUT was employed. The proportion 20-60-20 was chosen, because it produced better results 
than 20-20-60, 20-30-50, 20-40-40, or 20-50-30. The number of rules for each category 
remained at 150 throughout training. 

In the exemplar-based generalization procedure (EXM), the system started with an empty 
rule buffer and created two new rules each time a misidentification was made by the system 
or when there were no rules which qualified for the auction. Each of the two new rules 
was created by randomly assigning wild card (p = .5) or non-wild card status to each of 
the attribute positions of the training item. The non-wild card positions retained the values 
of the misidentified training item. The category assigned for the new rule was the category 
of the training item. This procedure is similar to Wilson's (1985, p. 19) "create operator." 
It differs in that it is triggered not only when no rule matches but also when the winning 
rule identifies the wrong category. 
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An option for each of these procedures is a feature called "attribute wild card tuning" 
(AWCT), which dynamically adjusts the wild card probability separately for each attribute. 
The new probability is computed as the weighted mean frequency of occurrence of a wild 
card in that position over all existing classifiers, but with each classifier weighted according 
to its fitness. This increases the chance that less informative attributes will be assigned 
wild-card status. We employed attribute wild-card tuning in all of the tests that follow, in- 
cluding the BIN and GRA runs in which there were 64 positions for tuning. 

6. Strength-based bidding systems 

We examined several variations of the more common methods of bidding and apportioning 
credit. For all of these methods, an initial strength value (NEWST) was assigned to each 
new rule, all rules were taxed each time an item was presented, and each rule that qualified 
for the auction paid a fixed proportion of its current strength for the privilege of attending. 
Two methods of apportioning credit to bidders were examined: winner-take-all and sharing 
in proportion to one's bid. Two methods of bidding were also examined: proportional to 
strength and proportional to the product of strength and specificity. The algorithms examined 
in this research were based on the approach described by Wilson (1988). The basic algorithm 
for the SS approach was: 

1. A match set [M] is selected consisting of all classifiers whose conditions are satisfied 
by the input string. 

2. Each classifier in [M] makes a bid equal to its strength (condition STR) or equal to 
the product of its strength and specificity (condition SS). Specificity is defined as the 
number of non-wild card attributes. 

3. The system makes its decision by selecting the classifier from [M] that has the highest 
bid and outputs the selected classifier's category as the system's decision. 

4. A fixed reward value (200% of NEWST) is given to the highest bidder if it advocated 
the correct category (condition WTA) or is shared among all classifiers in [M] that advo- 
cated the correct category (condition SHR). Each reward share is proportional to the 
size of the classifier's bid. If none of the classifiers in [M] advocate the correct category, 
no reward is given. 

5. Every classifier in [M] has its strength reduced by a fixed proportion of its bid. This 
proportion was 10% in condition STR and 1.5% in condition SS. These values were 
selected to maximize performance under each of the two conditions. 

6. Each classifier is taxed 1 unit of strength for each item that is presented. If the classifier's 
strength drops below 1, the classifier is immediately removed from the rule buffer. In 
the random and hybrid conditions, the rule is replaced by a newly created classifier 
that represents the same category. 

For each algorithm using these bidding systems, performance was examined under 4 dif- 
ferent values of NEWST. These values were 1000, 2000, 4000, and 8000. These values 
determine the length of time a rule can stay in the system without receiving all or part 
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of the reward. If NEWST is initially set at 1000, a rule that receives no reward is discarded 
after 1000 training items because of taxation. If NEWST is initially set at 8000, the rule 
will stay in the system much longer before it is discarded for erroneous identifications or 
inactivity. With the higher settings for NEWST, the system can retain rules of higher specific- 
ity that contribute to the system's performance less frequently. 

A simple factorial design was performed to examine the relative effectiveness of reward 
sharing versus winner-take-all, bidding on the basis of strength versus the product of strength 
and specificity, and rule creation by random, hybrid, or exemplar methods. In all of the 
conditions reported in the initial results (Tables 1, 2, 3, and 4), attribute values were 
represented as integers (INT) and the window size for defining a match was set at 1. The 
primary dependent measure for these analyses was the number of items from the 4000-item 
test set that were correctly identified after 5 learning passes and 1 verification pass through 
the 16,000-item training set. 

The results presented in Table 1 indicate the accuracy of identifying items in the test 
set under these various conditions. Sharing reward among all the bidders which advocated 
the correct outcome was clearly superior to the winner-take-all procedure. This is consistent 
with recent reports in the literature (e.g., Goldberg, 1989, p. 225; Wilson, 1988, p. 707), 
which advocated sharing reward. In the current application, reward sharing consistently 
produced more than a 50 % improvement over the performance observed with the winner- 
take-all procedure. 

The comparison between the two bidding procedures produced less clear results. Very 
similar performance levels were achieved with bidding based on strength alone or based 
on the product of strength and specificity. Holland (1986) advocates factoring specificity 
into the bid. Wilson (1988) presents evidence suggesting that performance may be superior 
when specificity does not influence bidding or reward distribution. Our results indicated 
that the two approaches produced equally accurate identifications of the test items. 

Table 1. Percent correct identifications on 4000-item test set with integer attribute representation and fuzzy matching. 

Reward Sharing Winner-Take-All 

Method of Rule Creation NEWST Strength Str*Spec Strength Str*Spec 

Random 

Hybrid 

Exemplar 

1000 49.5 51.0 24.5 30.7 
2000 52.6 49.0 25.6 30.4 
4000 47.9 45.7 24.6 31.5 
8000 40.2 43.9 30.0 28.4 

1000 62.6 67.1 30.4 30.6 
2000 68.8 68.5 37.7 32.6 
4000 69.4 70.4 36.6 34.3 
8000 65.2 67.8 32.0 30.4 

1000 70.4 69.7 53.4 54.5 
2000 74.8 76.7 58.8 60.3 
4000 78.3 77.4 65.0 64.2 
8000 80.8 80.3 66.0 67.8 
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Table 2. Mean rule specificity after verification with integer attribute representation and fuzzy matching. 

Reward Sharing Winner-Take-All 

Method of Rule Creation NEWST Strength Str*Spec Strength Str*Spec 

Random 

Hybrid 

Exemplar 

1000 2.83 2.49 2.95 3.30 
2000 2.92 2.69 3.03 3.23 
4000 3.00 2.74 3.20 3.18 
8000 3.03 2.83 3.13 3.11 

1000 3.99 3.58 3.13 3.45 
2000 3.98 3.50 3.48 3.73 
4000 4.61 3.67 3.91 3.67 
8000 4.53 3.73 3.77 3.40 

1000 6.65 6.48 7.44 7.63 
2000 6.97 6.90 7.90 8.36 
4000 7.50 7.79 8.07 8.86 
8000 8.02 8.23 8.41 9.01 

Table 3. Number of rules after verification with integer attribute representation and fuzzy matching. 

Reward Sharing Winner-Take-All 

Method of Rule Creation NEWST Strength Str*Spec Strength Str*Spec 

Random 

Hybrid 

Exemplar 

1000 107 136 38 64 
2000 183 216 64 70 

266 333 88 96 
8000 335 437 108 119 

1000 93 122 61 62 
2000 177 224 93 111 
4000 371 360 128 116 
8000 651 610 159 126 

1000 242 236 187 197 
2000 434 435 345 379 
4000 747 772 550 667 
8000 1302 1313 878 990 

The different methods for rule generation did have noticeable effects on performance. 

The exemplar-based procedure (EXM) produced higher accuracy scores than the other two 
methods. The hybrid method (HYB) was also clearly superior to the random method (RAN). 
EXM was also notable in that it took much greater advantage of the additional resources 
that were available when NEWST was set at the higher values (e.g., 4000, 8000). Its superior 
performance over HYB and RAN was accentuated at the higher NEWST settings. When 
valid rules are highly complex, RAN and HYB may not generate good candidates at a 
high enough frequency to take advantage of the larger rule buffer. The superior performance 
observed for EXM in this application may be a general characteristic of supervised learning 
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Table 4. Number of rules created during training with integer attribute representation and fuzzy matching. 

Reward Sharing Winner-Take-All 

Method of Rule Creation NEWST Strength Str*Spec Strength Str*Spec 

Random 

Hybrid 

Exemplar 

1000 324,432 309,202 337,126 325,151 
2000 164,805 156,098 173,764 167,151 
4000 85,266 79,870 90,411 86,700 
8000 44,925 41,622 47,711 45,666 

1000 311,315 301,819 351,352 341,920 
2000 156,004 150,308 187,503 175,722 
4000 77,426 76,003 98,761 95,452 
8000 40,618 39,462 52,601 50,591 

1000 49,742 47,896 64,564 60,300 
2000 42,882 41,584 57,620 53,178 
4000 39,316 36,642 52,198 47,268 
8000 36,428 33,184 50,006 43,990 

situations in which highly informative examples are available. The fact that each of our 
26 outcomes came in different "flavors" may also help explain the advantage of the exemplar- 
based procedure. 

We also examined several other dependent measures. Table 2 summarizes the effect of 
the several manipulations on rule specificity. In this research, specificity is defined as the 
number of non-wild card attributes in the rule. 

Under most conditions, the average specificity of the rules increased as the value of 
NEWST increased. This is consistent with the expectation that, in general, more specific 
rules will participate in the auction less often than more general rules. Since the tax was 
fixed at 1 unit under all conditions, an increase in the value of NEWST has the effect of 
permitting a rule to maintain a viable level of strength for longer periods of time between 
successful participations in the auction. This favors a rule base of higher average specificity, 
which is consistent with the general trend observed in Table 2. 

Our results also indicated that the average specificity of the rules was greater with rule 
creation by HYB than by RAN. This difference can probably be attributed to the fact that 
both the mutation procedure and the crossover procedure create rules with a wider range 
of specificities than their parent rules. This provides an opportunity for the reward alloca- 
tion process to discover rules that are more accurate because they are more specific. The 
exemplar-based rule creation procedure produced rules that had a much higher average 
specificity than either RAN or HYB. This probably results from the lower wild card proba- 
bility (p = .5 for exemplar as compared to p = .75 for random) combined with the greater 
tendency for these more specific exemplar-based rules to match test items and provide cor- 
rect answers. When we examined the random procedure with the wild card probability 
set at .5, the rules were more specific, but hardly ever matched a test item, and when one 
did, it hardly ever had the correct outcome. Therefore, almost all of the high-specificity 
rules generated by the random process were discarded by the system. 
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The relationships between average rule specificity and our manipulations of the bidding 
system seem to be complex. With rule creation by the random method or exemplar method, 
winner-take-all reward allocation produces a rule set of higher specificity than the reward 
sharing procedure. This relationship appears to be reversed with the hybrid rule creation 
procedure. When the reward was shared, bids proportional to strength tended to produce 
higher specificity rules than bids proportional to the product of strength and specificity. 
When the reward was allocated on a winner-take-all basis, however, the opposite relation- 
ship tended to occur: strength bidding produces less specific rules than strength-times- 
specificity bidding. We do not have a ready explanation for these complex relationships. 

The size of the final rule set (after verification during the sixth pass) seems to correlate 
closely with the accuracy scores for the various procedures. The relationship is positive: 
the greater the number of rules, the higher the accuracy score. The procedure that created 
and retained the largest number of successful rules involved rule creation by exemplars 
and reward allocation by sharing. The procedure that produces the fewest successful rules 
employed random rule creation and allocated reward by the winner-take-all procedure. 
Another relationship that was observed is that bidding by strength times specificity tends 
to produce a larger set of successful rules than bidding by strength alone. In this case, 
identification accuracy is not improved by the greater number of rules; SS produces more 
successful rules than STR but the identification accuracy of the two procedures tends to 
be equivalent. 

The final dependent measure we examined was the total number of rules created during 
the training phase. These results are summarized in Table 4. The number of rules created 
by RAN and HYB depends on how often rules are purged, and thus upon the quality of 
the existing rule base. With both of these procedures, a fixed-size rule buffer (n = 3900) 
was maintained throughout training. The number of rule creations was much greater for 
RAN and HYB than for EXM. With the RAN and HYB procedure, there were more rule 
creations with winner-take-all and with bidding by strength alone. 

The lower rule creation rate for the exemplar-based procedure results from the higher 
quality of the rules which are being produced. It is apparently unnecessary to create and 
purge a large number of rules in order to find a few effective ones. Rule turn-over is greatly 
reduced when the rules have a decent probability of being effective in their initial form. 
The larger number of rules in the winner-take-all condition is most likely the result of 
the poorer overall performance of this procedure which leads to more frequent rule purgings. 
The reason for the greater number of rule creations in the strength-only bidding condition 
is not clear. The two bidding procedures generally produced similar levels of performance 
and thus some additional factor, other than final performance level, must be responsible 
for the additional number of rules created by strength-only bidding. 

The rate of rule creation, even in the most unfavorable conditions, did not appear to 
destabilize the rule set. In the RAN and HYB procedures, the size of the rule set was fixed 
at 3900. During training, 80,000 training items were examined. In the most active condi- 
tion, 350,000 rules were created. This averages 4.5 new rules per trial or a turn-over rate 
in relation to the entire set of rules of 0.12 % per trial. This is about 1% of the rules being 
changed every 9 trials. When NEWST was set at 8000, the rate of change for these same 
conditions was considerably slower, approximating 1% turn-over every 60 trials. 
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7. Window size 

In all of the conditions discussed so far, classifiers and test items were based on an integer 

attribute representation and a fixed window size of 1 was employed for " fuzzy"  matching. 
I f  the attribute value of a test item was within 1 unit of the rule value, the rule and test 
item matched on that attribute. In our preliminary analyses, various window sizes were 
explored to determine which setting would produce the best performance. Results are pre- 
sented in Table 5 comparing window sizes of 0, 1, and 2. In each case, rule creation is 

exemplar based, bidding is by strength, reward is shared, the amount of reward is set at 
2 times NEWST, and the tax is set at 1. The wild card probabili ty for rule creation was 
adjusted for each window size: p = .7 for window size 0, p = .5 for window size 1, and 

p = .3 for window size 2. These values were selected because they optimized performance 
for each procedure. 

The results in Table 5 indicate that the classifier system performs best with a window 
size of 1. Under conditions of optimal resource allocation (NEWST = 8000), requiring 
exact matches (window size 0) led to fewer correct identifications, a larger rule set, and 
rules of lower average specificity. Setting a wider window (window size 2) produced fewer 
correct identifications, a smaller rule set, and rules of higher average specificity. There 

appears to be a direct trade-off between window size and specificity. With a wider window, 
it is feasible to increase the number of relevant attributes and still maintain a reasonable 
level of matching. When exact matches are required, only a few attributes can be specified 
as non-wild cards if a reasonable level of matching is to be maintained. 

The results in Table 5 also indicate a clear relationship between window size and the 

number of rules that the system employs. With exact matching, many rules are required. 
With a wider window, fewer rules are required in order to maintain a comparable level 
of performance. 

Table 5. Effect of fuzzy match window size on exemplar-based rule creation with strength bidding and reward sharing. 

Window Size 

Dependent Measure NEWST 0 1 2 

% Correct Identifications on 4000-Item Test Set 

Mean Rule Specificity 

Number of Rules after Verification 

1000 53.3 70.4 59.4 
2000 62.3 74.8 61.9 
4000 67.1 78.3 66.2 
8000 69.4 80.8 67.3 

1000 3.05 6.65 10.70 
2000 3.24 6.97 11.13 
4000 3.54 7.50 11.50 
8000 3.89 8.02 11.77 

1000 210 242 191 
2000 392 434 314 
4000 860 747 449 
8000 1872 1302 681 
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8. Binary and gray code attribute representation 

All of the previous results represented attribute values as integers and employed a window 
of fixed size to determine when matching occurred. Traditional classifier systems more 
commonly employ binary or gray code attribute representations for numerical attributes. 
Table 6 compares the performance of the classifier systems while varying the method of 
attribute representation. Binary and gray code methods are compared directly to the integer 
method. In each case, rule creation is exemplar-based, bidding is by strength, reward is 
shared, the amount of reward is set at 2 times NEWST, and the tax is set at 1. The wild 
card probability in rule creation was adjusted for each method: p = .65 for binary and 
gray code and p = .5 for integer representation. These values were selected to optimize 
performance. 

The results in Table 6 indicate that the integer representation seems to be more effective 
on the supervised learning task than either the binary or gray code representations. The 
gray code representation was slightly superior to the binary representation. In the binary 
and gray code conditions, rule specificity refers to the number of relevant positions out 
of a 64 item vector. With the integer representation, only 16 positions are available. With 
this in mind, the integer representation produced rules with higher average specificity (in 
a relative sense) than either of the other two methods. For example, when NEWST was 
set at 8000, 50 % of the positions were relevant in the integer condition, while 33 % were 
relevant in the binary and gray code conditions. This higher level of specificity is feasible 
with the integer representation, because exact matches are not required. When exact matches 
are required in the integer condition (see window size = 0 in Table 5), the proportion 
of relevant attributes is 24 %, which is even less than with the binary and gray code condi- 
tions. Note however that the accuracy level when exact matches are required with the integer 
representation is still superior to both the binary and gray code representations. Thus, even 

Table 6 Effect of binary, gray code, and integer representations on exemplar-based rule creation with strength 
bidding and reward sharing. 

Type of Attribute Representation 

Dependent Measure NEWST Binary Gray Code Integer 

% Correct Identifications on 4000-Item Test Set 

Mean Rule Specificity 

Number of Rules after Verification 

1000 43.2 45.9 70.4 
2000 48.0 52.4 74.8 
4000 52.4 56.5 78.3 
8000 54.7 59.3 80.0 

1000 22.00 21.34 6.65 
2000 21.54 21.22 6.97 
4000 21.52 20.80 7.50 
8000 21.37 21.06 8.02 

I000 124 116 242 
2000 233 251 434 
4000 519 588 747 
8000 1600 1441 1302 
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without fuzzy matching, the integer method out-performs the binary and gray code methods 
on the character recognition task. One should note, however, that we did not examine par- 
tial matching under the binary and gray code conditions. These methods may have been 
more effective with partial matching. 

We did not examine binary and gray-code representations with single-point crossovers. 
It is possible that binary and gray-code representations may compete more successfully 
with the integer representation under conditions in which crossovers are employed for rule 
creation. One of the advantages of these representations is that they provide a rich set of 
schemata which make crossovers more effective. 

The results in Table 6 also indicate that the number of rules present after verification 
is influenced by the type of representation. When NEWST is set at 8000, the integer represen- 
tation with fuzzy matching produces a higher accuracy level with a smaller set of rules 
than the binary and gray code representations. When NEWST is set at lower values, the 
integer method employs a larger number of rules than the other methods. The gray code 
representation uses fewer rules to outperform the binary representation with NEWST set 
at 8000. At lower settings, the gray code procedure still has higher accuracy than the binary 
procedure but employs a similar number of rules. 

9. Accuracy-utility bidding system 

The concepts of rule strength and rule specificity have played an important role in the devel- 
opment of Holland's classifier system. In the current research, alternative measures of rule 
fitness were examined in an effort to address problems we encountered with this applica- 
tion. With some of our parameter selections, stable performance was observed for a period 
of time and then an abrupt deterioration occurred. Useful default hierarchies, which had 
been developed gradually, appeared to lose one or two critical rules, seemingly for complex 
reasons. These losses triggered a major calamity in which other rules, no longer protected 
from over-generalizing their knowledge, began to make many errors. Within a short time, 
a large number of previously successful rules had been discarded and the performance of 
the system dropped significantly. We believe that this problem resulted from selecting the 
wrong set of parameters for the bidding and reward system. In essence, the strength- 
specificity bidding system seems to be very sensitive to parameter values and can perform 
quite poorly if these values are not set within a precise range. Our experience with these 
difficulties provided motivation to explore an alternative reward allocation system. 

The "accuracy-utility" procedure (AU) separates the concept of rule strength into two 
distinct measures: accuracy and utility. These two measures bear a functional resemblance 
to Holland's (1976) measures of average payoff rate and age. Holland defined the rate measure 
(p. 282) as the payoff received over an epoch divided by the length of the epoch. Our accu- 
racy measure follows this precedent except that it tracks the relative frequency of payoff 
rather than the average amount. Holland's age measure (p. 186) was defined as the number 
of time steps since the rule received a positive payoff. Our utility measure assesses a similar 
aspect of performance except that it tracks overall performance rather than focusing exclu- 
sively on the rule's most recent exploit. Booker (1988, p. 180) also employs multiple per- 
formance measures to determine reward distribution. 



176 P.W. FREY AND D.J. SLATE 

In our AU procedure, accuracy tracks the ratio, for the life of the rule, of the number 
of correct bids to the total number of bids. This frequency ratio estimates the individual 
likelihood that each rule in [M] will forecast the correct category. From a baseball perspec- 
tive, accuracy is the rule's batting average for the occasions on which it qualifies for the 
auction (i.e., is a member of [M]). The rule in [M] with the highest accuracy score wins 
the auction and determines the system's output. 

To prevent young rules from prematurely dominating the bidding after a few lucky guesses, 
the accuracy ratio is defined with a bias of 2 added to the denominator. This bias forces 
each new rule to serve an "apprenticeship" during which it develops a stable accuracy record 
without disturbing the performance of the system. This bias also has the advantage of select- 
ing the more experienced rule when two or more rules have 100 % accuracy. Note that the 
accuracy measure weighs initial performance as heavily as recent performance and thus 
assumes a time-invariant sampling process. 

For the results presented in this article, a further adjustment was made to the accuracy 
measure. Empirical analysis indicated that the behavior of some rules clearly invalidated 
the implicit assumption that the accuracy of a rule was independent of whether or not it 
won the auction. For unexplained reasons, some rules had significantly worse performance 
records when they won the bidding than when they lost to another rule. To compensate 
for this phenomenon, a second measure was tabulated. This second measure was computed 
as the number of correct identifications on the occasions when the rule won the bidding 
divided by the number of times the rule won the bidding. This measure was given an initial 
optimistic bias (2 out of 2) to prevent it from prematurely crippling a young rule. Each 
rule's net accuracy was defined as the minimum of the two accuracy measures. The effect 
of this "win-accuracy" adjustment was a modest but noticeable improvement in perform- 
ance. This modification did not seem to compromise the stability of the system. 

Our utility measure attempts to measure the usefulness of a rule to the system and thereby 
the desirability of its retention. The utility measure is defined as the number of correct 
winning bids divided by the number of stimulus items presented during the lifetime of the 
rule. Note that an accurate, frequent bidder that is consistently outbid by a more mature 
or more accurate rule will have a low utility. 

Rules stay in the system as long as their utility values exceed a pre-specified criterion 
value. In the current research, we examined utility criteria of 1/1000, 1/2000, 1/4000, and 
1/8000. Each new classifier was given a probationary period during which it was retained 
by the system without regard to its utility value. The probationary period extended until 
the number of stimulus items "seen" by the rule exceeded the reciprocal of the utility cri- 
terion, i.e., 1000, 2000, 4000, or 8000 items. The utility criteria provides a simple and 
direct parameter to control the number of rules in the system. An investigator can set this 
parameter to produce a rule set of a desired size and the system should then select a set 
of rules which optimizes performance for a rule set of that size. 

In the accuracy-utility system, five performance characteristics are retained for each classi- 
fier. These measures are the number of bidding opportunities, the number of matches, the 
number of wins when the classifier matches, the number of correct identifications when 
the classifier matches, and the number of correct identifications when the classifier wins 
the bidding. 
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Although the strength concept has been broadened into two separate measures, the revised 
system appears to be conceptually simpler. There are no auxiliary constructs like taxes. 
Considerations like strength alone versus strength times specificity or reward sharing versus 
winner-take-all are no longer problematic. In addition, the AU bidding system has only 
a single parameter, the utility criterion, which needs to be adjusted for the specific appli- 
cation. Traditional strength systems require parameter optimization for amount of reward, 
amount of tax, and bid cost. 

Our algorithm for the AU bidding system is: 

1. A match set [M] is selected consisting of all classifiers whose conditions are satisfied 
by the input string. 

2. Each classifier in [M] makes a bid equal to its accuracy. 
3. The system makes its decision by selecting the classifier from [M] that has the highest 

bid and outputs the selected classifier's category as the system's decision. 
4. Each classifier's accuracy and utility measure are recalculated. 
5. If a classifier's utility drops below the pre-specified criterion, the classifier is immediately 

removed in condition EXM or replaced by a newly created classifier that represents 
the same category in condition RAN or GEN. 

As was the case with the strength bidding system, accuracy-utility was most successful 
in creating and retaining effective classifiers when it employed integers for attribute coding, 
an exemplar-based rule creation procedure, a wild card probability set at 0.5, and a window 
size for fuzzy matches set at 1. During the 80,000 training trials (16,000 items × 5 passes), 
two new rules were created each time the winning rule misidentified the test item. During 
the sixth and final pass through the 16,000 items, no new rules were created. Rules that 
fell below the predetermined utility criterion were discarded throughout all six passes. The 
rules remaining after the sixth pass were tested against the 4000-item test set. 

System Utility Criterion % Correct Specificity Final Rules Rules Created 

INT.EXM.AU 1/1000 68.5 6.84 252 52,612 
window = 1 1/2000 73.3 7.32 426 44,278 
wild card = 0.5 1/4000 79.2 7.71 674 37,082 
AWCT = yes 1/8000 81.6 8.16 1040 33,446 

These results are comparable to the results observed with the strength-based bidding 
system with exemplar rule creation and reward sharing. As the utility criterion is reduced, 
the system retains a larger number of rules, the average rule specificity increases, and the 
number of items in the test set that are correctly identified increases. This system produces 
its highest performance level (81.6%) with the utility criterion set at 1/8000. The strength- 
based bidding system, employing exemplar rule creation, produced a comparable perform- 
ance level (e.g., 80.8%). 

In comparison to the best strength systems (reward sharing, exemplar-based rule creation, 
NEWST = 8000), the accuracy-utility system seems to produce rules of similar specificity, 
creates slightly fewer rules during training, and has a more compact rule set after verifica- 
tion. The accuracy-utility system also greatly simplified our task in finding the parameter 
settings which led to optimal performance. 
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10. Exemplar/hybrid rule creation 

The prior results indicated that hybrid procedures for creating rules by altering or combin- 
ing existing strong rules have beneficial results. A limitation of this procedure appears to 
be the quality of the rules created initially by a random process. To explore this relation- 
ship more thoroughly, we examined a rule creation process in which the hybrid methods 
were used to augment the exemplar-based method. All observations were taken using integer 
attribute representation with the window size set at 1 and a strength based bidding system 
with reward shared among the correct bidders. In all cases, the tax value was set at 1 and 
the reward value at 2 times NEWST. Bids were based on strength only, and the bid cost 
was set at 10% of the current strength. 

Rules were created initially by generating two new exemplar-based rules each time the 
system failed to identify the test item correctly. When a rule's strength decreased to zero 
or less, it was replaced by a new rule using either a mutation or a single-point crossover. 
Preliminary analysis indicated that a 50-50 mix of mutations and crossovers produced the 
best performance. This 50% mixture was employed for all subsequent analyses. Mutations 
and crossovers were operationalized exactly in the manner described previously. Hybrid 
rule creation was not activated if the rule to be replaced was above position 8000 in the 
rule buffer. This specification kept the rule buffer at a manageable size (approximately 
9000 to 11,000 rules) during training. 

System Utility Criterion % Correct Specificity Final Rules Rules Created 

INT.EG.STR 1000 60.0 5.94 129 723,219 
window = 1 2000 71.4 6.10 250 374,096 
wild card = 0.5 4000 79.0 6.72 537 184,721 
AWCT = yes 8000 82.7 7.50 1190 101,969 

As compared to the system using exemplar-based rule creation with all other settings iden- 
tical, the exemplar/hybrid system demonstrated several interesting properties. The rule base 
that was retained after verification was consistently more compact and consistently had 
rules of lower specificity. These differences were quite dramatic. Apparently the hybrid 
procedure had the effect of producing more general rules. At the lower NEWST settings 
(1000 and 2000), the exemplar/hybrid system had lower accuracy in identifying test items. 
At the higher settings (4000 and 8000), this system had superior performance in regard 
to the test items. It appears that with a large rule buffer, the exemplar/hybrid combination 
is the best procedure for producing a high quality set of rules (i.e., maximizing accuracy 
and compactness). 

11. Discussion 

Holland (1986) proposed an adaptive general-purpose rule-based system that is designed 
to cover a broad range of applications. The procedures discussed in this report are relevant 
to a more limited set of applications in which problems can be solved by categorizing test 
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cases from a time-invariant population. If  one chooses an appropriate representation, a 
wide range of problems can be approached within this framework. Our analysis of the liter- 
ature suggests that more than half of the common expert system applications can be repre- 
sented as categorization problems. 

Our efforts to adapt Holland's approach to this more specialized environment have pro- 
duced several useful findings. There are many real-world applications in which attribute 
values come naturally as ordered numerical variables. Our results indicate that one can 
successfully map these values onto a limited range of integers and employ a "fuzzy match" 
strategy for rule activation. On our character recognition problem, integer representations 
were more effective than either binary or gray-code (Caruana & Schaffer, 1988; Goldberg, 
1989) representations. 

Our results also demonstrated that exemplar-based rule creation methods can be quite 
effective. On the character recognition task, random rule generation and a hybrid procedure 
(random creation, mutations, and single-point crossovers) were noticeably less successful. 
In the character recognition task, rules created by randomly selecting attribute values had 
a very low probability of being useful. Even when 350,000 rules were created in this fashion, 
only a small number were consistently successful. This small group seemed to be inade- 
quate for the needs of the genetic procedures. If  we had presented many more training 
examples to the system, it might have eventually produced enough information for a genetic 
process to become effective in evolving better rules. Other types of crossovers, such as 
two-point crossovers or within-feature crossovers, might produce more effective results. 
It is clear, however, that exemplar-based rule creation produced good candidates at a much 
faster rate than the random or hybrid procedures we examined. 

The hybrid procedure created rules initially by a random process and then evolved better 
rules with mutations and crossovers. An unusual finding was that this system performed 
best when genetic mutations were more common than genetic crossovers. This outcome 
may result from the composition of the outcome categories in the character recognition 
task. In particular, the different outcomes appear in specific flavors. For example, the Gothic 
fonts are quite different from the others. When crossovers are the predominant rule creation 
method, the system tends to produce many rules that are variations of the same main theme. 
This focus tends to favor the most common "flavor" at the expense of the others. The muta- 
tion operator tends to produce a more diverse set of offspring and this characteristic may 
be helpful in coping with the multiple flavors of the same category. 

When the exemplar-based procedure was combined with the genetic procedures, the hybrid 
system produced rules that achieved the highest performance level. This rule set was also 
more general and more compact than any of the other rule sets that performed at a similar 
level. Of the various methods we examined for rule creation, the exemplar-genetic combi- 
nation was the most effective. 

The concepts of rule strength and rule specificity have played an important role in the 
development of Holland's classifier system. Wilson (1988) has published results that ques- 
tion whether it is useful to consider rule specificity in determining reward allocation and 
bid cost. Our results were consistent with Wilson's in that rule specificity did not provide 
any particular advantage. When bid cost and reward allocation were computed without regard 
to specificity, system accuracy was comparable and other performance measures were at 
least as good. 
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Our results with the character recognition task indicated that reward sharing is much 
more effective than a winner-take-all reward allocation procedure. The superiority of reward 
sharing was observed in every condition we explored. From a conceptual perspective, there 
are several advantages of sharing reward among the top bidders who advocate the correct 
outcome. One advantage of reward sharing is that more reward enters the system. When 
the top bidder in a winner-take-all procedure advocates the incorrect category, no reward 
is given to any rule. When the reward is shared, it is more probable that at least one of 
the bidders will advocate the correct category. This has the effect of distributing reward 
more completely with the reward sharing procedure than with winner-take-all. A second 
advantage of reward sharing is that individual rules receive feedback more frequently when 
reward is distributed among all the bidders. More frequent feedback seems to enhance the 
rate at which rule strengths adapt to the environmental contingencies. 

In the current research, we explored a variation of Holland's (1976) multiattribute proce- 
dure for evaluating rule fitness. With strength-based classifier systems that have a large 
number of rules, we have observed instabilities in the performance of the system. Although 
there are several possible explanations for this undesirable phenomenon, we believe that 
the problem relates to the many parameters that need to be adjusted for strength-based 
bidding systems. Investigators often have difficulty finding a proper balance among these 
parameters. If  the balance between bid cost and reward allocation is not optimal or if the 
tax rate is not optimal, significant performance decrements can result. 

We explored the accuracy-utility bidding system in an attempt to clarify the conceptual 
basis for establishing a rule's fitness and to reduce the number of parameters associated 
with evaluating fitness. In a strength-based system, a rule's fitness is expressed as a single 
strength measure based on initial strength, payoffs, bid costs, and taxes. In our research, 
we observed that fitness had two separate aspects that can be measured independently: 
skill at performing classifications and contribution to overall system performance. A rule 
can be skillful in making correct classifications and yet be so specific that it contributes 
very little to overall system performance. Or a rule may be very general and yet be judged 
redundant because it is usually outbid by one or more rules that are more skillful. 

The definitions we chose for these two fitness measures are consistent with the conceptual 
distinctions described by Holland (1976). The skill measure, accuracy, is defined as the 
cumulative ratio of the number of correct bids to the total number of bids, with an initial 
pessimistic bias to help counter "beginner's luck." This bias permits new rules to develop 
reliable accuracy values without influencing the performance of the system. The accuracy 
measure is a fraction bounded by 0 and 1 and provides a historical record of the rule's 
success in providing a correct response each time it matches a test case. When several 
rules match a test item, the one with the highest accuracy is heeded. Accuracy scores are 
modified for all rules that matched the test item. This consistent feedback enhances the 
reliability of the accuracy measure. 

The second measure, utility, reflects the relative frequency with which each rule contrib- 
utes positively to the system's overall performance. This definition is based on the idea 
that overall system performance is simply the rate of making correct classifications and 
that an individual's utility is the proportion of that rate attributable to the rule's correct 
winning bids. At any given moment, system performance is equal to the sum of the utilities 
of all of the rules currently in the system. With infinite resources, all rules of high accuracy 
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can be maintained in the system. If resources are limited and the system must operate with 
a small set of rules, the rules that contribute least often to system performance are dis- 
carded, regardless of their accuracy scores. This heavy reliance on utility is predicated 
on the principle that a rule with a low accuracy score should be retained by the system 
as long as there is no other rule which can out-perform it in its own arena. If there were 
a rule with more accurate predictions, that rule would be winning the auctions and have 
accumulated a higher utility score. 

Both measures, accuracy and utility, are defined in the context of a time-invariant popula- 
tion of data items. This is appropriate for the character recognition data set. The use of 
lifetime "batting averages" makes sense if each bidding opportunity provides equally valid 
feedback for determining rule fitness. If the application involves an evolving data environ- 
ment, these definitions might be more effective if recent activity were weighted more heavily. 
Holland's (1976) age measure is similar to our utility measure but is computed on the sole 
basis of the rule's most recent contribution to system performance. The relative importance 
of these differences is probably worth exploring. Our time-invariant method has the advan- 
tage of increasing reliability by statistical averaging. It has the disadvantage of being less 
sensitive to changes in the data environment over time. 

One of the important characteristics of Holland's parallel rule-based system is the ability 
to create a default hierarchy of rules (Holland, Holyoak, Nisbett, & Thagard, 1986, p. 18) 
that allows a group of rules to act in concert in a way that promotes both efficiency and 
correct performance. The accuracy-utility approach seems to foster default hierarchies in 
a natural way. The rules with the highest accuracy scores tend to be very specific ones 
that attend auctions infrequently. They only bid in highly specialized situations and are 
almost always correct. More general rules tend to have lower accuracy scores and therefore 
only win the bidding when no specialist is present. By directly measuring each rule's accu- 
racy, our system seems to foster stable default hierarchies without having to factor rule 
specificity into the bidding process. 

A major disadvantage of the current formulation of the accuracy-utility bidding system 
is the requirement for feedback after each test item. Many applications for classifier systems 
involve intermittent feedback. Holland's bucket brigade approach was developed specifically 
to address the credit apportionment problem when rules contribute positively to the system's 
performance by preparing (setting up) circumstances that eventually lead to positive out- 
comes. The manner in which accuracy and utility are currently defined makes them insen- 
sitive to the consequences of delayed reward. The accuracy-utility approach might be adapted 
to intermittent feedback applications by employing Sutton's (1988) method of temporal 
differences. 

There are several other interesting contemporary approaches for classifying complex stim- 
uli into a fixed set of categories. In this report, we have focused on learning algorithms 
that produce parallel rule-based systems. This methodology is a natural outgrowth of the 
ideas pioneered by Holland (1975, 1976, 1980, 1986). There are also other promising ap- 
proaches that are not explored in this report but might profitably be examined in future 
research. These include methods that build a decision tree in a recursive manner (Hunt, 
Marin, & Stone, 1966; Quinlan, 1979, 1986), methods that categorize individual items based 
on their similarity to previously classified cases (Stanfill & Waltz, 1986), and methods 
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based on connectionist networks (Ackley, Hinton, & Sejnowski, 1985; Anderson, 1983; 
Rumelhart & Zipser, 1985). In particular, it would be of interest to determine the effective- 
ness of these other methods on our letter recognition problem. 
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